Package 'spatialreg'

Title: Spatial Regression Analysis
Description: A collection of all the estimation functions for spatial cross-sectional models (on lattice/areal data using spatial weights matrices) contained up to now in 'spdep'. These model fitting functions include maximum likelihood methods for cross-sectional models proposed by 'Cliff' and 'Ord' (1973, ISBN:0850860369) and (1981, ISBN:0850860814), fitting methods initially described by 'Ord' (1975) <doi:10.1080/01621459.1975.10480272>. The models are further described by 'Anselin' (1988) <doi:10.1007/978-94-015-7799-1>. Spatial two stage least squares and spatial general method of moment models initially proposed by 'Kelejian' and 'Prucha' (1998) <doi:10.1023/A:1007707430416> and (1999) <doi:10.1111/1468-2354.00027> are provided. Impact methods and MCMC fitting methods proposed by 'LeSage' and 'Pace' (2009) <doi:10.1201/9781420064254> are implemented for the family of cross-sectional spatial regression models. Methods for fitting the log determinant term in maximum likelihood and MCMC fitting are compared by 'Bivand et al.' (2013) <doi:10.1111/gean.12008>, and model fitting methods by 'Bivand' and 'Piras' (2015) <doi:10.18637/jss.v063.i18>; both of these articles include extensive lists of references. A recent review is provided by 'Bivand', 'Millo' and 'Piras' (2021) <doi:10.3390/math9111276>. 'spatialreg' >= 1.1-* corresponded to 'spdep' >= 1.1-1, in which the model fitting functions were deprecated and passed through to 'spatialreg', but masked those in 'spatialreg'. From versions 1.2-*, the functions have been made defunct in 'spdep'. From version 1.3-6, add Anselin-Kelejian (1997) test to `stsls` for residual spatial autocorrelation <doi:10.1177/016001769702000109>.
Authors: Roger Bivand [cre, aut] , Gianfranco Piras [aut], Luc Anselin [ctb], Andrew Bernat [ctb], Eric Blankmeyer [ctb], Yongwan Chun [ctb], Virgilio Gómez-Rubio [ctb], Daniel Griffith [ctb], Martin Gubri [ctb], Rein Halbersma [ctb], James LeSage [ctb], Angela Li [ctb], Hongfei Li [ctb], Jielai Ma [ctb], Abhirup Mallik [ctb, trl], Giovanni Millo [ctb], Kelley Pace [ctb], Josiah Parry [ctb] , Pedro Peres-Neto [ctb], Tobias Rüttenauer [ctb], Mauricio Sarrias [ctb], JuanTomas Sayago [ctb], Michael Tiefelsdorf [ctb]
Maintainer: Roger Bivand <[email protected]>
License: GPL-2
Version: 1.3-7
Built: 2025-01-19 15:21:45 UTC
Source: https://github.com/r-spatial/spatialreg

Help Index


Approximate profile-likelihood estimator (APLE)

Description

The Approximate profile-likelihood estimator (APLE) of the simultaneous autoregressive model's spatial dependence parameter was introduced in Li et al. (2007). It employs a correction term using the eigenvalues of the spatial weights matrix, and consequently should not be used for large numbers of observations. It also requires that the variable has a mean of zero, and it is assumed that it has been detrended. The spatial weights object is assumed to be row-standardised, that is using default style="W" in nb2listw.

Usage

aple(x, listw, override_similarity_check=FALSE, useTrace=TRUE)

Arguments

x

a zero-mean detrended continuous variable

listw

a listw object from for example spdep::nb2listw

override_similarity_check

default FALSE, if TRUE - typically for row-standardised weights with asymmetric underlying general weights - similarity is not checked

useTrace

default TRUE, use trace of sparse matrix W %*% W (Li et al. (2010)), if FALSE, use crossproduct of eigenvalues of W as in Li et al. (2007)

Details

This implementation has been checked with Hongfei Li's own implementation using her data; her help was very valuable.

Value

A scalar APLE value.

Author(s)

Roger Bivand [email protected]

References

Li, H, Calder, C. A. and Cressie N. A. C. (2007) Beyond Moran's I: testing for spatial dependence based on the spatial autoregressive model. Geographical Analysis 39, 357-375; Li, H, Calder, C. A. and Cressie N. A. C. (2012) One-step estimation of spatial dependence parameters: Properties and extensions of the APLE statistic, Journal of Multivariate Analysis 105, 68-84.

See Also

nb2listw, aple.mc, aple.plot

Examples

wheat <- st_read(system.file("shapes/wheat.gpkg", package="spData")[1], quiet=TRUE)
library(spdep)
nbr1 <- spdep::poly2nb(wheat, queen=FALSE)
nbrl <- spdep::nblag(nbr1, 2)
nbr12 <- spdep::nblag_cumul(nbrl)
cms0 <- with(as.data.frame(wheat), tapply(yield, c, median))
cms1 <- c(model.matrix(~ factor(c) -1, data=wheat) %*% cms0)
wheat$yield_detrend <- wheat$yield - cms1
isTRUE(all.equal(c(with(as.data.frame(wheat),
 tapply(yield_detrend, c, median))), rep(0.0, 25),
 check.attributes=FALSE))
spdep::moran.test(wheat$yield_detrend, spdep::nb2listw(nbr12, style="W"))
aple(as.vector(scale(wheat$yield_detrend, scale=FALSE)), spdep::nb2listw(nbr12, style="W"))
## Not run: 
errorsarlm(yield_detrend ~ 1, wheat, spdep::nb2listw(nbr12, style="W"))

## End(Not run)

Approximate profile-likelihood estimator (APLE) permutation test

Description

A permutation bootstrap test for the approximate profile-likelihood estimator (APLE).

Usage

aple.mc(x, listw, nsim, override_similarity_check=FALSE, useTrace=TRUE)

Arguments

x

a zero-mean detrended continuous variable

listw

a listw object from for example spdep::nb2listw

nsim

number of simulations

override_similarity_check

default FALSE, if TRUE - typically for row-standardised weights with asymmetric underlying general weights - similarity is not checked

useTrace

default TRUE, use trace of sparse matrix W %*% W (Li et al. (2010)), if FALSE, use crossproduct of eigenvalues of W as in Li et al. (2007)

Value

A boot object as returned by the boot function.

Author(s)

Roger Bivand [email protected]

References

Li, H, Calder, C. A. and Cressie N. A. C. (2007) Beyond Moran's I: testing for spatial dependence based on the spatial autoregressive model. Geographical Analysis 39, 357-375; Li, H, Calder, C. A. and Cressie N. A. C. (2012) One-step estimation of spatial dependence parameters: Properties and extensions of the APLE statistic, Journal of Multivariate Analysis 105, 68-84.

See Also

aple, boot

Examples

## Not run: 
wheat <- st_read(system.file("shapes/wheat.gpkg", package="spData")[1], quiet=TRUE)
nbr1 <- spdep::poly2nb(wheat, queen=FALSE)
nbrl <- spdep::nblag(nbr1, 2)
nbr12 <- spdep::nblag_cumul(nbrl)
wheat_g <- wheat
st_geometry(wheat_g) <- NULL
cms0 <- with(wheat_g, tapply(yield, c, median))
cms1 <- c(model.matrix(~ factor(c) -1, data=wheat) %*% cms0)
wheat$yield_detrend <- wheat$yield - cms1
oldRNG <- RNGkind()
RNGkind("L'Ecuyer-CMRG")
set.seed(1L)
boot_out_ser <- aple.mc(as.vector(scale(wheat$yield_detrend, scale=FALSE)),
 spdep::nb2listw(nbr12, style="W"), nsim=500)
plot(boot_out_ser)
boot_out_ser
library(parallel)
oldCores <- set.coresOption(NULL)
nc <- max(2L, detectCores(logical=FALSE), na.rm = TRUE)-1L
# set nc to 1L here
if (nc > 1L) nc <- 1L
invisible(set.coresOption(nc))
set.seed(1L)
if (!get.mcOption()) {
  cl <- makeCluster(nc)
  set.ClusterOption(cl)
} else{
  mc.reset.stream()
}
boot_out_par <- aple.mc(as.vector(scale(wheat$yield_detrend, scale=FALSE)),
    spdep::nb2listw(nbr12, style="W"), nsim=500)
if (!get.mcOption()) {
  set.ClusterOption(NULL)
  stopCluster(cl)
}
boot_out_par
invisible(set.coresOption(oldCores))
RNGkind(oldRNG[1], oldRNG[2])

## End(Not run)

Approximate profile-likelihood estimator (APLE) scatterplot

Description

A scatterplot decomposition of the approximate profile-likelihood estimator, and a local APLE based on the list of vectors returned by the scatterplot function.

Usage

aple.plot(x, listw, override_similarity_check=FALSE, useTrace=TRUE, do.plot=TRUE, ...)
localAple(x, listw, override_similarity_check=FALSE, useTrace=TRUE)

Arguments

x

a zero-mean detrended continuous variable

listw

a listw object from for example spdep::nb2listw

override_similarity_check

default FALSE, if TRUE - typically for row-standardised weights with asymmetric underlying general weights - similarity is not checked

useTrace

default TRUE, use trace of sparse matrix W %*% W (Li et al. (2010)), if FALSE, use crossproduct of eigenvalues of W as in Li et al. (2007)

do.plot

default TRUE: should a scatterplot be drawn

...

other arguments to be passed to plot

Details

The function solves a secondary eigenproblem of size n internally, so constructing the values for the scatterplot is quite compute and memory intensive, and is not suitable for very large n.

Value

aple.plot returns list with components:

X

A vector as described in Li et al. (2007), p. 366.

Y

A vector as described in Li et al. (2007), p. 367.

localAple returns a vector of local APLE values.

Author(s)

Roger Bivand [email protected]

References

Li, H, Calder, C. A. and Cressie N. A. C. (2007) Beyond Moran's I: testing for spatial dependence based on the spatial autoregressive model. Geographical Analysis 39, pp. 357-375; Li, H, Calder, C. A. and Cressie N. A. C. (2012) One-step estimation of spatial dependence parameters: Properties and extensions of the APLE statistic, Journal of Multivariate Analysis 105, 68-84.

See Also

aple

Examples

## Not run: 
wheat <- st_read(system.file("shapes/wheat.gpkg", package="spData")[1], quiet=TRUE)
nbr1 <- spdep::poly2nb(wheat, queen=FALSE)
nbrl <- spdep::nblag(nbr1, 2)
nbr12 <- spdep::nblag_cumul(nbrl)
cms0 <- with(as.data.frame(wheat), tapply(yield, c, median))
cms1 <- c(model.matrix(~ factor(c) -1, data=wheat) %*% cms0)
wheat$yield_detrend <- wheat$yield - cms1
plt_out <- aple.plot(as.vector(scale(wheat$yield_detrend, scale=FALSE)),
 spdep::nb2listw(nbr12, style="W"), cex=0.6)
lm_obj <- lm(Y ~ X, plt_out)
abline(lm_obj)
abline(v=0, h=0, lty=2)
zz <- summary(influence.measures(lm_obj))
infl <- as.integer(rownames(zz))
points(plt_out$X[infl], plt_out$Y[infl], pch=3, cex=0.6, col="red")
crossprod(plt_out$Y, plt_out$X)/crossprod(plt_out$X)
wheat$localAple <- localAple(as.vector(scale(wheat$yield_detrend, scale=FALSE)),
 spdep::nb2listw(nbr12, style="W"))
mean(wheat$localAple)
hist(wheat$localAple)
opar <- par(no.readonly=TRUE)
plot(wheat[,"localAple"], reset=FALSE)
text(st_coordinates(st_centroid(st_geometry(wheat)))[infl,], labels=rep("*", length(infl)))
par(opar)

## End(Not run)

Spatial neighbour sparse representation

Description

Interface between Matrix class objects and weights lists. The as.spam.listw method converts a "listw" object to a sparse matrix as defined in the spam package.

Usage

as.spam.listw(listw)
listw2U_spam(lw)
listw2U_Matrix(lw)
as_dgRMatrix_listw(listw)
as_dsTMatrix_listw(listw)
as_dsCMatrix_I(n)
as_dsCMatrix_IrW(W, rho)
Jacobian_W(W, rho)
powerWeights(W, rho, order=250, X, tol=.Machine$double.eps^(3/5))

Arguments

listw, lw

a listw object from for example nb2listw

W

a dsTMatrix object created using as_dsTMatrix_listw from a symmetric listw object

rho

spatial regression coefficient

n

length of diagonal for identity matrix

order

Power series maximum limit

X

A numerical matrix

tol

Tolerance for convergence of power series

Author(s)

Roger Bivand [email protected]

See Also

nb2listw

Examples

## Not run: 
require(sf, quietly=TRUE)
columbus <- st_read(system.file("shapes/columbus.gpkg", package="spData")[1], quiet=TRUE)
#require(spdep, quietly=TRUE)
col.gal.nb <- spdep::read.gal(system.file("weights/columbus.gal", package="spData")[1])
col.listw <- spdep::nb2listw(col.gal.nb)
if (require("spam", quietly=TRUE)) {
  col.sp <- as.spam.listw(col.listw)
  str(col.sp)
}
suppressMessages(nyadjmat <- as.matrix(foreign::read.dbf(system.file(
 "misc/nyadjwts.dbf", package="spData")[1])[-1]))
nyadjlw <- spdep::mat2listw(nyadjmat)
listw_NY <- spdep::nb2listw(nyadjlw$neighbours, style="B")
W_C <- as(listw_NY, "CsparseMatrix")
W_R <- as(listw_NY, "RsparseMatrix")
W_S <- as(listw_NY, "symmetricMatrix")
n <- nrow(W_S)
I <- Diagonal(n)
rho <- 0.1
c(determinant(I - rho * W_S, logarithm=TRUE)$modulus)
sum(log(1 - rho * eigenw(listw_NY)))
nW <- - W_S
nChol <- Cholesky(nW, Imult=8)
n * log(rho) + (2 * c(determinant(update(nChol, nW, 1/rho))$modulus))

## End(Not run)
nb7rt <- spdep::cell2nb(7, 7, torus=TRUE)
x <- matrix(sample(rnorm(500*length(nb7rt))), nrow=length(nb7rt))
lw <- spdep::nb2listw(nb7rt)
if (FALSE) {
# Only needed in some simulation settings where the input and
# output distributions must agree in all but autocorrelation
e <- eigenw(lw)
x <- apply(x, 2, scale)
st <- apply(x, 2, function(x) shapiro.test(x)$p.value)
x <- x[, (st > 0.2 & st < 0.8)]
x <- apply(x, 2, function(v) residuals(spautolm(v ~ 1, listw=lw,
 method="eigen", control=list(pre_eig=e, fdHess=FALSE))))
x <- apply(x, 2, scale)
}
W <- as(lw, "CsparseMatrix")
system.time(e <- invIrM(nb7rt, rho=0.98, method="solve", feasible=NULL) %*% x)
system.time(ee <- powerWeights(W, rho=0.98, X=x))
str(attr(ee, "internal"))
all.equal(e, as(ee, "matrix"), check.attributes=FALSE)
## Not run: 
system.time(ee <- powerWeights(W, rho=0.9, X=x))
system.time(ee <- powerWeights(W, rho=0.98, order=1000, X=x))
all.equal(e, as(ee, "matrix"), check.attributes=FALSE)
nb60rt <- spdep::cell2nb(60, 60, torus=TRUE)
W <- as(spdep::nb2listw(nb60rt), "CsparseMatrix")
set.seed(1)
x <- matrix(rnorm(dim(W)[1]), ncol=1)
system.time(ee <- powerWeights(W, rho=0.3, X=x))
str(as(ee, "matrix"))
obj <- errorsarlm(as(ee, "matrix")[,1] ~ 1, listw=spdep::nb2listw(nb60rt), method="Matrix")
coefficients(obj)

## End(Not run)

Spatial regression model Jacobian computations

Description

These functions are made available in the package namespace for other developers, and are not intended for users. They provide a shared infrastructure for setting up data for Jacobian computation, and then for caclulating the Jacobian, either exactly or approximately, in maximum likelihood fitting of spatial regression models. The techniques used are the exact eigenvalue, Cholesky decompositions (Matrix, spam), and LU ones, with Chebyshev and Monte Carlo approximations; moments use the methods due to Martin and Smirnov/Anselin.

Usage

do_ldet(coef, env, which=1)
jacobianSetup(method, env, con, pre_eig=NULL, trs=NULL, interval=NULL, which=1)
cheb_setup(env, q=5, which=1)
mcdet_setup(env, p=16, m=30, which=1)
eigen_setup(env, which=1)
eigen_pre_setup(env, pre_eig, which=1)
spam_setup(env, pivot="MMD", which=1)
spam_update_setup(env, in_coef=0.1, pivot="MMD", which=1)
Matrix_setup(env, Imult, super=as.logical(NA), which=1)
Matrix_J_setup(env, super=FALSE, which=1)
LU_setup(env, which=1)
LU_prepermutate_setup(env, coef=0.1, order=FALSE, which=1)
moments_setup(env, trs=NULL, m, p, type="MC", correct=TRUE, trunc=TRUE, eq7=TRUE, which=1)
SE_classic_setup(env, SE_method="LU", p=16, m=30, nrho=200, interpn=2000,
 interval=c(-1,0.999), SElndet=NULL, which=1)
SE_whichMin_setup(env, SE_method="LU", p=16, m=30, nrho=200, interpn=2000,
 interval=c(-1,0.999), SElndet=NULL, which=1)
SE_interp_setup(env, SE_method="LU", p=16, m=30, nrho=200,
 interval=c(-1,0.999), which=1)
can.be.simmed(listw)

Arguments

coef

spatial coefficient value

env

environment containing pre-computed objects, fixed after assignment in setup functions

which

default 1; if 2, use second listw object

method

string value, used by jacobianSetup to choose method

con

control list passed from model fitting function and parsed in jacobianSetup to set environment variables for method-specific setup

pre_eig

pre-computed eigenvalues of length n

q

Chebyshev approximation order; default in calling spdep functions is 5, here it cannot be missing and does not have a default

p

Monte Carlo approximation number of random normal variables; default calling spdep functions is 16, here it cannot be missing and does not have a default

m

Monte Carlo approximation number of series terms; default in calling spdep functions is 30, here it cannot be missing and does not have a default; m serves the same purpose in the moments method

pivot

default “MMD”, may also be “RCM” for Cholesky decompisition using spam

in_coef

fill-in initiation coefficient value, default 0.1

Imult

see Cholesky; numeric scalar which defaults to zero. The matrix that is decomposed is A+m*I where m is the value of Imult and I is the identity matrix of order ncol(A). Default in calling spdep functions is 2, here it cannot be missing and does not have a default, but is rescaled for binary weights matrices in proportion to the maximim row sum in those calling functions

super

see Cholesky; logical scalar indicating is a supernodal decomposition should be created. The alternative is a simplicial decomposition. Default in calling spdep functions is FALSE for “Matrix_J” and as.logical(NA) for “Matrix”. Setting it to NA leaves the choice to a CHOLMOD-internal heuristic

order

default FALSE; used in LU_prepermutate, note warnings given for lu method

trs

A numeric vector of m traces, as from trW

type

moments trace type, see trW

correct

default TRUE: use Smirnov correction term, see trW

trunc

default TRUE: truncate Smirnov correction term, see trW

eq7

default TRUE; use equation 7 in Smirnov and Anselin (2009), if FALSE no unit root correction

SE_method

default “LU”, alternatively “MC”; underlying lndet method to use for generating SE toolbox emulation grid

nrho

default 200, number of lndet values in first stage SE toolbox emulation grid

interval

default c(-1,0.999) if interval argument NULL, bounds for SE toolbox emulation grid

interpn

default 2000, number of lndet values to interpolate in second stage SE toolbox emulation grid

SElndet

default NULL, used to pass a pre-computed two-column matrix of coefficient values and corresponding interpolated lndet values

listw

a spatial weights object

Details

Since environments are containers in the R workspace passed by reference rather than by value, they are useful for passing objects to functions called in numerical optimisation, here for the maximum likelihood estimation of spatial regression models. This technique can save a little time on each function call, balanced against the need to access the objects in the environment inside the function. The environment should contain a family string object either “SAR”, “CAR” or “SMA” (used in do_ldet to choose spatial moving average in spautolm, and these specific objects before calling the set-up functions:

eigen

Classical Ord eigenvalue computations - either:

listw

A listw spatial weights object

can.sim

logical scalar: can the spatial weights be made symmetric by similarity

verbose

logical scalar: legacy report print control, for historical reasons only

or:

pre_eig

pre-computed eigenvalues

and assigns to the environment:

eig

a vector of eigenvalues

eig.range

the search interval for the spatial coefficient

method

string: “eigen”

Matrix

Sparse matrix pre-computed Cholesky decomposition with fast updating:

listw

A listw spatial weights object

can.sim

logical scalar: can the spatial weights be made symmetric by similarity

and assigns to the environment:

csrw

sparse spatial weights matrix

nW

negative sparse spatial weights matrix

pChol

a “CHMfactor” from factorising csrw with Cholesky

nChol

a “CHMfactor” from factorising nW with Cholesky

method

string: “Matrix”

Matrix_J

Standard Cholesky decomposition without updating:

listw

A listw spatial weights object

can.sim

logical scalar: can the spatial weights be made symmetric by similarity

n

number of spatial objects

and assigns to the environment:

csrw

sparse spatial weights matrix

I

sparse identity matrix

super

the value of the super argument

method

string: “Matrix_J”

spam

Standard Cholesky decomposition without updating:

listw

A listw spatial weights object

can.sim

logical scalar: can the spatial weights be made symmetric by similarity

n

number of spatial objects

and assigns to the environment:

csrw

sparse spatial weights matrix

I

sparse identity matrix

pivot

string — pivot method

method

string: “spam”

spam_update

Pre-computed Cholesky decomposition with updating:

listw

A listw spatial weights object

can.sim

logical scalar: can the spatial weights be made symmetric by similarity

n

number of spatial objects

and assigns to the environment:

csrw

sparse spatial weights matrix

I

sparse identity matrix

csrwchol

A Cholesky decomposition for updating

method

string: “spam”

LU

Standard LU decomposition without updating:

listw

A listw spatial weights object

n

number of spatial objects

and assigns to the environment:

W

sparse spatial weights matrix

I

sparse identity matrix

method

string: “LU”

LU_prepermutate

Standard LU decomposition with updating (pre-computed fill-reducing permutation):

listw

A listw spatial weights object

n

number of spatial objects

and assigns to the environment:

W

sparse spatial weights matrix

lu_order

order argument to lu

pq

2-column matrix for row and column permutation for fill-reduction

I

sparse identity matrix

method

string: “LU”

MC

Monte Carlo approximation:

listw

A listw spatial weights object

and assigns to the environment:

clx

list of Monte Carlo approximation terms (the first two simulated traces are replaced by their analytical equivalents)

W

sparse spatial weights matrix

method

string: “MC”

cheb

Chebyshev approximation:

listw

A listw spatial weights object

and assigns to the environment:

trT

vector of Chebyshev approximation terms

W

sparse spatial weights matrix

method

string: “Chebyshev”

moments

moments approximation:

listw

A listw spatial weights object

can.sim

logical scalar: can the spatial weights be made symmetric by similarity

and assigns to the environment:

trs

vector of traces, possibly approximated

q12

integer vector of length 2, unit roots terms, ignored until 0.5-52

eq7

logical scalar: use equation 7

correct

logical scalar: use Smirnov correction term

trunc

logical scalar: truncate Smirnov correction term

method

string: “moments”

SE_classic

:

listw

A listw spatial weights object

n

number of spatial objects

and assigns to the environment:

detval

two column matrix of lndet grid values

method

string: “SE_classic”

SE_method

string: “LU” or “MC”

SE_whichMin

:

listw

A listw spatial weights object

n

number of spatial objects

and assigns to the environment:

detval

two column matrix of lndet grid values

method

string: “SE_whichMin”

SE_method

string: “LU” or “MC”

SE_interp

:

listw

A listw spatial weights object

n

number of spatial objects

and assigns to the environment:

fit

fitted spline object from which to predict lndet values

method

string: “SE_interp”

SE_method

string: “LU” or “MC”

Some set-up functions may also assign similar to the environment if the weights were made symmetric by similarity.

Three set-up functions emulate the behaviour of the Spatial Econometrics toolbox (March 2010) maximum likelihood lndet grid performance. The toolbox lndet functions compute a smaller number of lndet values for a grid of coefficient values (spacing 0.01), and then interpolate to a finer grid of values (spacing 0.001). “SE_classic”, which is an implementation of the SE toolbox code, for example in f_sar.m, appears to have selected a row in the grid matrix one below the correct row when the candidate coefficient value was between 0.005 and 0.01-fuzz, always rounding the row index down. A possible alternative is to choose the index that is closest to the candidate coefficient value (“SE_whichMin”). Another alternative is to fit a spline model to the first stage coarser grid, and pass this fitted model to the log likelihood function to make a point prediction using the candidate coefficient value, rather than finding the grid index (“SE_interp”).

Value

do_ldet returns the value of the Jacobian for the calculation method recorded in the environment argument, and for the Monte Carlo approximation, returns a measure of the spread of the approximation as an “sd” attribute; the remaining functions modify the environment in place as a side effect and return nothing.

Author(s)

Roger Bivand [email protected]

References

LeSage J and RK Pace (2009) Introduction to Spatial Econometrics. CRC Press, Boca Raton, pp. 77–110.

Bivand, R. S., Hauke, J., and Kossowski, T. (2013). Computing the Jacobian in Gaussian spatial autoregressive models: An illustrated comparison of available methods. Geographical Analysis, 45(2), 150-179.

See Also

spautolm, lagsarlm, errorsarlm, Cholesky

Examples

data(boston, package="spData")
#require("spdep", quietly=TRUE)
lw <- spdep::nb2listw(boston.soi)
can.sim <- can.be.simmed(lw)
env <- new.env(parent=globalenv())
assign("listw", lw, envir=env)
assign("can.sim", can.sim, envir=env)
assign("similar", FALSE, envir=env)
assign("verbose", FALSE, envir=env)
assign("family", "SAR", envir=env)
eigen_setup(env)
get("similar", envir=env)
do_ldet(0.5, env)
rm(env)
env <- new.env(parent=globalenv())
assign("listw", lw, envir=env)
assign("can.sim", can.sim, envir=env)
assign("similar", FALSE, envir=env)
assign("verbose", FALSE, envir=env)
assign("family", "SAR", envir=env)
assign("n", length(boston.soi), envir=env)
eigen_pre_setup(env, pre_eig=eigenw(similar.listw(lw)))
do_ldet(0.5, env)
rm(env)
env <- new.env(parent=globalenv())
assign("listw", lw, envir=env)
assign("can.sim", can.sim, envir=env)
assign("similar", FALSE, envir=env)
assign("family", "SAR", envir=env)
assign("n", length(boston.soi), envir=env)
Matrix_setup(env, Imult=2, super=FALSE)
get("similar", envir=env)
do_ldet(0.5, env)
rm(env)
env <- new.env(parent=globalenv())
assign("listw", lw, envir=env)
assign("n", length(boston.soi), envir=env)
assign("can.sim", can.sim, envir=env)
assign("similar", FALSE, envir=env)
assign("family", "SAR", envir=env)
spam_setup(env)
get("similar", envir=env)
do_ldet(0.5, env)
rm(env)
env <- new.env(parent=globalenv())
assign("listw", lw, envir=env)
assign("n", length(boston.soi), envir=env)
assign("similar", FALSE, envir=env)
assign("family", "SAR", envir=env)
LU_setup(env)
get("similar", envir=env)
do_ldet(0.5, env)
rm(env)
env <- new.env(parent=globalenv())
assign("listw", lw, envir=env)
assign("n", length(boston.soi), envir=env)
assign("similar", FALSE, envir=env)
assign("family", "SAR", envir=env)
LU_prepermutate_setup(env)
get("similar", envir=env)
do_ldet(0.5, env)
rm(env)
env <- new.env(parent=globalenv())
assign("listw", lw, envir=env)
assign("similar", FALSE, envir=env)
assign("family", "SAR", envir=env)
cheb_setup(env, q=5)
get("similar", envir=env)
do_ldet(0.5, env)
rm(env)
env <- new.env(parent=globalenv())
assign("listw", lw, envir=env)
assign("n", length(boston.soi), envir=env)
assign("similar", FALSE, envir=env)
assign("family", "SAR", envir=env)
set.seed(12345)
mcdet_setup(env, p=16, m=30)
get("similar", envir=env)
do_ldet(0.5, env)
rm(env)

Spatial simultaneous autoregressive error model estimation by GMM

Description

An implementation of Kelejian and Prucha's generalised moments estimator for the autoregressive parameter in a spatial model.

Usage

GMerrorsar(formula, data = list(), listw, na.action = na.fail,
 zero.policy = attr(listw, "zero.policy"), method="nlminb", arnoldWied=FALSE, 
 control = list(), pars, scaleU=FALSE, verbose=NULL, legacy=FALSE,
 se.lambda=TRUE, returnHcov=FALSE, pWOrder=250, tol.Hcov=1.0e-10)
## S3 method for class 'Gmsar'
summary(object, correlation = FALSE, Hausman=FALSE, ...)
GMargminImage(obj, lambdaseq, s2seq)

Arguments

formula

a symbolic description of the model to be fit. The details of model specification are given for lm()

data

an optional data frame containing the variables in the model. By default the variables are taken from the environment which the function is called.

listw

a listw object created for example by nb2listw

na.action

a function (default na.fail), can also be na.omit or na.exclude with consequences for residuals and fitted values - in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to nb2listw may be subsetted.

zero.policy

default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE (default) assign NA - causing GMerrorsar() to terminate with an error

method

default "nlminb", or optionally a method passed to optim to use an alternative optimizer

arnoldWied

default FALSE

control

A list of control parameters. See details in optim or nlminb.

pars

starting values for λ\lambda and σ2\sigma^2 for GMM optimisation, if missing (default), approximated from initial OLS model as the autocorrelation coefficient corrected for weights style and model sigma squared

scaleU

Default FALSE: scale the OLS residuals before computing the moment matrices; only used if the pars argument is missing

verbose

default NULL, use global option value; if TRUE, reports function values during optimization.

legacy

default FALSE - compute using the unfiltered values of the response and right hand side variables; if TRUE - compute the fitted value and residuals from the spatially filtered model using the spatial error parameter

se.lambda

default TRUE, use the analytical method described in http://econweb.umd.edu/~prucha/STATPROG/OLS/desols.pdf

returnHcov

default FALSE, return the Vo matrix for a spatial Hausman test

tol.Hcov

the tolerance for computing the Vo matrix (default=1.0e-10)

pWOrder

default 250, if returnHcov=TRUE, pass this order to powerWeights as the power series maximum limit

object, obj

Gmsar object from GMerrorsar

correlation

logical; (default=FALSE), TRUE not available

Hausman

if TRUE, the results of the Hausman test for error models are reported

...

summary arguments passed through

lambdaseq

if given, an increasing sequence of lambda values for gridding

s2seq

if given, an increasing sequence of sigma squared values for gridding

Details

When the control list is set with care, the function will converge to values close to the ML estimator without requiring computation of the Jacobian, the most resource-intensive part of ML estimation.

Note that the fitted() function for the output object assumes that the response variable may be reconstructed as the sum of the trend, the signal, and the noise (residuals). Since the values of the response variable are known, their spatial lags are used to calculate signal components (Cressie 1993, p. 564). This differs from other software, including GeoDa, which does not use knowledge of the response variable in making predictions for the fitting data.

The GMargminImage may be used to visualize the shape of the surface of the argmin function used to find lambda.

Value

A list object of class Gmsar

type

"ERROR"

lambda

simultaneous autoregressive error coefficient

coefficients

GMM coefficient estimates

rest.se

GMM coefficient standard errors

s2

GMM residual variance

SSE

sum of squared GMM errors

parameters

number of parameters estimated

lm.model

the lm object returned when estimating for λ=0\lambda=0

call

the call used to create this object

residuals

GMM residuals

lm.target

the lm object returned for the GMM fit

fitted.values

Difference between residuals and response variable

formula

model formula

aliased

if not NULL, details of aliased variables

zero.policy

zero.policy for this model

vv

list of internal bigG and litg components for testing optimisation surface

optres

object returned by optimizer

pars

start parameter values for optimisation

Hcov

Spatial DGP covariance matrix for Hausman test if available

legacy

input choice of unfiltered or filtered values

lambda.se

value computed if input argument TRUE

arnoldWied

were Arnold-Wied moments used

GMs2

GM argmin sigma squared

scaleU

input choice of scaled OLS residuals

vcov

variance-covariance matrix of regression coefficients

na.action

(possibly) named vector of excluded or omitted observations if non-default na.action argument used

Author(s)

Luc Anselin and Roger Bivand

References

Kelejian, H. H., and Prucha, I. R., 1999. A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model. International Economic Review, 40, pp. 509–533; Cressie, N. A. C. 1993 Statistics for spatial data, Wiley, New York.

Roger Bivand, Gianfranco Piras (2015). Comparing Implementations of Estimation Methods for Spatial Econometrics. Journal of Statistical Software, 63(18), 1-36. doi:10.18637/jss.v063.i18.

See Also

optim, nlminb, errorsarlm

Examples

#require("spdep", quietly=TRUE)
data(oldcol, package="spdep")
COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 spdep::nb2listw(COL.nb, style="W"), method="eigen")
(x <- summary(COL.errW.eig, Hausman=TRUE))
coef(x)
COL.errW.GM <- GMerrorsar(CRIME ~ INC + HOVAL, data=COL.OLD,
 spdep::nb2listw(COL.nb, style="W"), returnHcov=TRUE)
(x <- summary(COL.errW.GM, Hausman=TRUE))
coef(x)
aa <- GMargminImage(COL.errW.GM)
levs <- quantile(aa$z, seq(0, 1, 1/12))
image(aa, breaks=levs, xlab="lambda", ylab="s2")
points(COL.errW.GM$lambda, COL.errW.GM$s2, pch=3, lwd=2)
contour(aa, levels=signif(levs, 4), add=TRUE)
COL.errW.GM1 <- GMerrorsar(CRIME ~ INC + HOVAL, data=COL.OLD,
 spdep::nb2listw(COL.nb, style="W"))
summary(COL.errW.GM1)
require("sf", quietly=TRUE)
nydata <- st_read(system.file("shapes/NY8_bna_utm18.gpkg", package="spData")[1], quiet=TRUE)
suppressMessages(nyadjmat <- as.matrix(foreign::read.dbf(system.file(
 "misc/nyadjwts.dbf", package="spData")[1])[-1]))
suppressMessages(ID <- as.character(names(foreign::read.dbf(system.file(
 "misc/nyadjwts.dbf", package="spData")[1]))[-1]))
identical(substring(ID, 2, 10), substring(as.character(nydata$AREAKEY), 2, 10))
listw_NY <- spdep::mat2listw(nyadjmat, as.character(nydata$AREAKEY), style="B")
esar1f <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, family="SAR", method="eigen")
summary(esar1f)
esar1gm <- GMerrorsar(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
 data=nydata, listw=listw_NY)
summary(esar1gm)
esar1gm1 <- GMerrorsar(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
 data=nydata, listw=listw_NY, method="Nelder-Mead")
summary(esar1gm1)

Spatial weights matrix eigenvalues

Description

The eigenw function returns a numeric vector of eigenvalues of the weights matrix generated from the spatial weights object listw. The eigenvalues are used to speed the computation of the Jacobian in spatial model estimation:

log(det[IρW])=i=1nlog(1ρλi)\log(\det[I - \rho W]) = \sum_{i=1}^{n}\log(1 - \rho \lambda_i)

where WW is the n by n spatial weights matrix, and λi\lambda_i are the eigenvalues of WW.

Usage

eigenw(listw, quiet=NULL)
griffith_sone(P, Q, type="rook")
subgraph_eigenw(nb, glist=NULL, style="W", zero.policy=NULL, quiet=NULL)

Arguments

listw

a listw object created for example by nb2listw

quiet

default NULL, use global !verbose option value; set to FALSE for short summary

P

number of columns in the grid (number of units in a horizontal axis direction)

Q

number of rows in the grid (number of units in a vertical axis direction.)

type

“rook” or “queen”

nb

an object of class nb

glist

list of general weights corresponding to neighbours

style

style can take values “W”, “B”, “C”, “U”, “minmax” and “S”

zero.policy

default NULL, use global option value; if FALSE stop with error for any empty neighbour sets, if TRUE permit the weights list to be formed with zero-length weights vectors

Details

The griffith_sone function function may be used, following Ord and Gasim (for references see Griffith and Sone (1995)), to calculate analytical eigenvalues for binary rook or queen contiguous neighbours where the data are arranged as a regular P times Q grid. The subgraph_eigenw function may be used when there are multiple graph components, of which the largest may be handled as a dense matrix. Here the eigenvalues are computed for each subgraph in turn, and catenated to reconstruct the complete set. The functions may be used to provide pre-computed eigenvalues for spatial regression functions.

Value

a numeric or complex vector of eigenvalues of the weights matrix generated from the spatial weights object.

Author(s)

Roger Bivand [email protected]

References

Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion, p. 155; Ord, J. K. 1975 Estimation methods for models of spatial interaction, Journal of the American Statistical Association, 70, 120-126.; Griffith, D. A. and Sone, A. (1995). Trade-offs associated with normalizing constant computational simplifications for estimating spatial statistical models. Journal of Statistical Computation and Simulation, 51, 165-183.

See Also

eigen

Examples

#require(spdep)
data(oldcol, package="spdep")
W.eig <- eigenw(spdep::nb2listw(COL.nb, style="W"))
1/range(W.eig)
S.eig <- eigenw(spdep::nb2listw(COL.nb, style="S"))
1/range(S.eig)
B.eig <- eigenw(spdep::nb2listw(COL.nb, style="B"))
1/range(B.eig)
# cases for intrinsically asymmetric weights
crds <- cbind(COL.OLD$X, COL.OLD$Y)
k3 <- spdep::knn2nb(spdep::knearneigh(crds, k=3))
spdep::is.symmetric.nb(k3)
k3eig <- eigenw(spdep::nb2listw(k3, style="W"))
is.complex(k3eig)
rho <- 0.5
Jc <- sum(log(1 - rho * k3eig))
# complex eigenvalue Jacobian
Jc
# subgraphs
nc <- attr(k3, "ncomp")
if (is.null(nc)) nc <- spdep::n.comp.nb(k3)
nc$nc
table(nc$comp.id)
k3eigSG <- subgraph_eigenw(k3, style="W")
all.equal(sort(k3eig), k3eigSG)
W <- as(spdep::nb2listw(k3, style="W"), "CsparseMatrix")
I <- diag(length(k3))
Jl <- sum(log(abs(diag(slot(lu(I - rho * W), "U")))))
# LU Jacobian equals complex eigenvalue Jacobian
Jl
all.equal(Re(Jc), Jl)
# wrong value if only real part used
Jr <- sum(log(1 - rho * Re(k3eig)))
Jr
all.equal(Jr, Jl)
# construction of Jacobian from complex conjugate pairs (Jan Hauke)
Rev <- Re(k3eig)[which(Im(k3eig) == 0)]
# real eigenvalues
Cev <- k3eig[which(Im(k3eig) != 0)]
pCev <- Cev[Im(Cev) > 0]
# separate complex conjugate pairs
RpCev <- Re(pCev)
IpCev <- Im(pCev)
# reassemble Jacobian
Jc1 <- sum(log(1 - rho*Rev)) + sum(log((1 - rho * RpCev)^2 + (rho^2)*(IpCev^2)))
all.equal(Re(Jc), Jc1)
# impact of omitted complex part term in real part only Jacobian
Jc2 <- sum(log(1 - rho*Rev)) + sum(log((1 - rho * RpCev)^2))
all.equal(Jr, Jc2)
# trace of asymmetric (WW) and crossprod of complex eigenvalues for APLE
sum(diag(W %*% W))
crossprod(k3eig)
# analytical regular grid eigenvalues
rg <- spdep::cell2nb(ncol=7, nrow=7, type="rook")
rg_eig <- eigenw(spdep::nb2listw(rg, style="B"))
rg_GS <- griffith_sone(P=7, Q=7, type="rook")
all.equal(rg_eig, rg_GS)
## Not run: 
run <- FALSE
if (require("RSpectra", quietly=TRUE)) run <- TRUE
if (run) {
B <- as(spdep::nb2listw(rg, style="B"), "CsparseMatrix")
res1 <- eigs(B, k=1, which="LR")$values
resn <- eigs(B, k=1, which="SR")$values
print(Re(c(resn, res1)))
}
if (run) {
print(all.equal(range(Re(rg_eig)), c(resn, res1))) 
}
if (run) {
lw <- spdep::nb2listw(rg, style="W")
rg_eig <- eigenw(similar.listw(lw))
print(range(Re(rg_eig)))
}
if (run) {
W  <- as(lw, "CsparseMatrix")
print(Re(c(eigs(W, k=1, which="SR")$values, eigs(W, k=1, which="LR")$values)))
}
## End(Not run)

Spatial simultaneous autoregressive SAC model estimation by GMM

Description

An implementation of Kelejian and Prucha's generalised moments estimator for the autoregressive parameter in a spatial model with a spatially lagged dependent variable.

Usage

gstsls(formula, data = list(), listw, listw2 = NULL, na.action = na.fail, 
    zero.policy = attr(listw, "zero.policy"), pars=NULL, scaleU=FALSE, control = list(), 
    verbose=NULL, method="nlminb", robust=FALSE, legacy=FALSE, W2X=TRUE, sig2n_k=FALSE) 
## S3 method for class 'Gmsar'
impacts(obj, ..., n = NULL, tr = NULL, R = NULL,
 listw = NULL, evalues=NULL, tol = 1e-06, empirical = FALSE, Q=NULL)

Arguments

formula

a symbolic description of the model to be fit. The details of model specification are given for lm()

data

an optional data frame containing the variables in the model. By default the variables are taken from the environment which the function is called.

listw

a listw object created for example by nb2listw

listw2

a listw object created for example by nb2listw, if not given, set to the same spatial weights as the listw argument

na.action

a function (default na.fail), can also be na.omit or na.exclude with consequences for residuals and fitted values - in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to nb2listw may be subsetted.

zero.policy

default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE (default) assign NA - causing GMerrorsar() to terminate with an error

pars

starting values for λ\lambda and σ2\sigma^2 for GMM optimisation, if missing (default), approximated from initial 2sls model as the autocorrelation coefficient corrected for weights style and model sigma squared

scaleU

Default FALSE: scale the OLS residuals before computing the moment matrices; only used if the pars argument is missing

control

A list of control parameters. See details in optim or nlminb

verbose

default NULL, use global option value; if TRUE, reports function values during optimization.

method

default nlminb, or optionally a method passed to optim to use an alternative optimizer

robust

see stsls

legacy

see stsls

W2X

see stsls

sig2n_k

see stsls

obj

A spatial regression object created by lagsarlm, lagmess or by lmSLX; in HPDinterval.LagImpact, a LagImpact object

...

Arguments passed through to methods in the coda package

tr

A vector of traces of powers of the spatial weights matrix created using trW, for approximate impact measures; if not given, listw must be given for exact measures (for small to moderate spatial weights matrices); the traces must be for the same spatial weights as were used in fitting the spatial regression, and must be row-standardised

evalues

vector of eigenvalues of spatial weights matrix for impacts calculations

R

If given, simulations are used to compute distributions for the impact measures, returned as mcmc objects; the objects are used for convenience but are not output by an MCMC process

tol

Argument passed to mvrnorm: tolerance (relative to largest variance) for numerical lack of positive-definiteness in the coefficient covariance matrix

empirical

Argument passed to mvrnorm (default FALSE): if true, the coefficients and their covariance matrix specify the empirical not population mean and covariance matrix

Q

default NULL, else an integer number of cumulative power series impacts to calculate if tr is given

n

defaults to length(obj$residuals); in the method for Gmsar objects it may be used in panel settings to compute the impacts for cross-sectional weights only, suggested by Angela Parenti

Details

When the control list is set with care, the function will converge to values close to the ML estimator without requiring computation of the Jacobian, the most resource-intensive part of ML estimation.

Value

A list object of class Gmsar

lambda

simultaneous autoregressive error coefficient

coefficients

GMM coefficient estimates (including the spatial autocorrelation coefficient)

rest.se

GMM coefficient standard errors

s2

GMM residual variance

SSE

sum of squared GMM errors

parameters

number of parameters estimated

lm.model

NULL

call

the call used to create this object

residuals

GMM residuals

lm.target

NULL

fitted.values

Difference between residuals and response variable

formula

model formula

aliased

NULL

zero.policy

zero.policy for this model

LL

NULL

vv

list of internal bigG and litg components for testing optimisation surface

optres

object returned by optimizer

pars

start parameter values for optimisation

Hcov

NULL

na.action

(possibly) named vector of excluded or omitted observations if non-default na.action argument used

Author(s)

Gianfranco Piras and Roger Bivand

References

Kelejian, H. H., and Prucha, I. R., 1999. A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model. International Economic Review, 40, pp. 509–533; Cressie, N. A. C. 1993 Statistics for spatial data, Wiley, New York.

Roger Bivand, Gianfranco Piras (2015). Comparing Implementations of Estimation Methods for Spatial Econometrics. Journal of Statistical Software, 63(18), 1-36. doi:10.18637/jss.v063.i18.

See Also

optim, nlminb, GMerrorsar, GMargminImage

Examples

#require("spdep", quietly=TRUE) 
data(oldcol, package="spdep")
COL.errW.GM <- gstsls(CRIME ~ INC + HOVAL, data=COL.OLD, spdep::nb2listw(COL.nb, style="W"))
summary(COL.errW.GM)
aa <- GMargminImage(COL.errW.GM)
levs <- quantile(aa$z, seq(0, 1, 1/12))
image(aa, breaks=levs, xlab="lambda", ylab="s2")
points(COL.errW.GM$lambda, COL.errW.GM$s2, pch=3, lwd=2)
contour(aa, levels=signif(levs, 4), add=TRUE)
COL.errW.GM <- gstsls(CRIME ~ INC + HOVAL, data=COL.OLD,
 spdep::nb2listw(COL.nb, style="W"), scaleU=TRUE)
summary(COL.errW.GM)
listw <- spdep::nb2listw(COL.nb)
W <- as(listw, "CsparseMatrix")
trMat <- trW(W, type="mult")
impacts(COL.errW.GM, tr=trMat)

Impacts in spatial lag models

Description

The calculation of impacts for spatial lag and spatial Durbin models is needed in order to interpret the regression coefficients correctly, because of the spillovers between the terms in these data generation processes (unlike the spatial error model). Methods for “SLX” and Bayesian fitted models are also provided, the former do not need MC simulations, while the latter pass through MCMC draws.

Usage

#\method{impacts}{sarlm}(obj, \dots, tr, R = NULL, listw = NULL, evalues=NULL,
# useHESS = NULL, tol = 1e-06, empirical = FALSE, Q=NULL)
#\method{impacts}{lagmess}(obj, ..., R=NULL, listw=NULL, tol=1e-6,
# empirical=FALSE)
#\method{impacts}{SLX}(obj, ...)
#\method{impacts}{MCMC_sar_g}(obj, ..., tr=NULL, listw=NULL, evalues=NULL, Q=NULL)
#\method{impacts}{MCMC_sem_g}(obj, ..., tr=NULL, listw=NULL, evalues=NULL, Q=NULL)
#\method{impacts}{MCMC_sac_g}(obj, ..., tr=NULL, listw=NULL, evalues=NULL, Q=NULL)
## S3 method for class 'LagImpact'
plot(x, ..., choice="direct", trace=FALSE, density=TRUE)
## S3 method for class 'LagImpact'
print(x, ..., reportQ=NULL)
## S3 method for class 'LagImpact'
summary(object, ..., zstats=FALSE, short=FALSE, reportQ=NULL)
#\method{print}{WXImpact}(x, ...)
#\method{summary}{WXImpact}(object, ..., adjust_k=(attr(object, "type") == "SDEM"))
## S3 method for class 'LagImpact'
HPDinterval(obj, prob = 0.95, ..., choice="direct")
intImpacts(rho, beta, P, n, mu, Sigma, irho, drop2beta, bnames, interval,
 type, tr, R, listw, evalues, tol, empirical, Q, icept, iicept, p, mess=FALSE,
 samples=NULL, zero_fill = NULL, dvars = NULL)

Arguments

obj

A spatial regression object created by lagsarlm or by lmSLX; in HPDinterval.LagImpact, a LagImpact object

...

Arguments passed through to methods in the coda package

tr

A vector of traces of powers of the spatial weights matrix created using trW, for approximate impact measures; if not given, listw must be given for exact measures (for small to moderate spatial weights matrices); the traces must be for the same spatial weights as were used in fitting the spatial regression, and must be row-standardised

listw

If tr is not given, a spatial weights object as created by nb2listw; they must be the same spatial weights as were used in fitting the spatial regression, but do not have to be row-standardised

evalues

vector of eigenvalues of spatial weights matrix for impacts calculations

n

defaults to length(obj$residuals); in the method for gmsar objects it may be used in panel settings to compute the impacts for cross-sectional weights only, suggested by Angela Parenti

R

If given, simulations are used to compute distributions for the impact measures, returned as mcmc objects; the objects are used for convenience but are not output by an MCMC process

useHESS

Use the Hessian approximation (if available) even if the asymptotic coefficient covariance matrix is available; used for comparing methods

tol

Argument passed to mvrnorm: tolerance (relative to largest variance) for numerical lack of positive-definiteness in the coefficient covariance matrix

empirical

Argument passed to mvrnorm (default FALSE): if true, the coefficients and their covariance matrix specify the empirical not population mean and covariance matrix

Q

default NULL, else an integer number of cumulative power series impacts to calculate if tr is given

reportQ

default NULL; if TRUE and Q given as an argument to impacts, report impact components

x, object

LagImpact objects created by impacts methods

zstats

default FALSE, if TRUE, also return z-values and p-values for the impacts based on the simulations

short

default FALSE, if TRUE passed to the print summary method to omit printing of the mcmc summaries

choice

One of three impacts: direct, indirect, or total

trace

Argument passed to plot.mcmc: plot trace plots

density

Argument passed to plot.mcmc: plot density plots

prob

Argument passed to HPDinterval.mcmc: a numeric scalar in the interval (0,1) giving the target probability content of the intervals

adjust_k

default TRUE if SDEM else FALSE, adjust internal OLS SDEM standard errors by dividing by n rather than (n-k) (default changed and bug fixed after 0.7-8; standard errors now ML in SDEM summary and impacts summary and identical - for SLX use FALSE)

rho, beta, P, mu, Sigma, irho, drop2beta, bnames, interval, type, icept, iicept, p, mess, samples, zero_fill, dvars

internal arguments shared inside impacts methods

Details

If called without R being set, the method returns the direct, indirect and total impacts for the variables in the model, for the variables themselves in tha spatial lag model case, for the variables and their spatial lags in the spatial Durbin (mixed) model case. The spatial lag impact measures are computed using eq. 2.46 (LeSage and Pace, 2009, p. 38), either using the exact dense matrix (when listw is given), or traces of powers of the weights matrix (when tr is given). When the traces are created by powering sparse matrices, the exact and the trace methods should give very similar results, unless the number of powers used is very small, or the spatial coefficient is close to its bounds.

If R is given, simulations will be used to create distributions for the impact measures, provided that the fitted model object contains a coefficient covariance matrix. The simulations are made using mvrnorm with the coefficients and their covariance matrix from the fitted model.

The simulations are stored as mcmc objects as defined in the coda package; the objects are used for convenience but are not output by an MCMC process. The simulated values of the coefficients are checked to see that the spatial coefficient remains within its valid interval — draws outside the interval are discarded.

If a model is fitted with the “Durbin=” set to a formula subsetting the explanatory variables, the impacts object returned reports Durbin impacts for variables included in the formula and lag impacts for the other variables.

When Q and tr are given, addition impact component results are provided for each step in the traces of powers of the weights matrix up to and including the Q'th power. This increases computing time because the output object is substantially increased in size in proportion to the size of Q.

The method for gmsar objects is only for those of type SARAR output by gstsls, and assume that the spatial error coefficient is fixed, and thus omitted from the coefficients and covariance matrix used for simulation.

Value

An object of class LagImpact.

If no simulation is carried out, the object returned is a list with:

direct

numeric vector

indirect

numeric vector

total

numeric vector

and a matching Qres list attribute if Q was given.

If simulation is carried out, the object returned is a list with:

res

a list with three components as for the non-simulation case, with a matching Qres list attribute if Q was given

sres

a list with three mcmc matrices, for the direct, indirect and total impacts with a matching Qmcmc list attribute if Q was given

Author(s)

Roger Bivand [email protected]

References

LeSage J and RK Pace (2009) Introduction to Spatial Econometrics. CRC Press, Boca Raton, pp. 33–42, 114–115; LeSage J and MM Fischer (2008) Spatial growth regressions: model specification, estimation and interpretation. Spatial Economic Analysis 3 (3), pp. 275–304.

Roger Bivand, Gianfranco Piras (2015). Comparing Implementations of Estimation Methods for Spatial Econometrics. Journal of Statistical Software, 63(18), 1-36. doi:10.18637/jss.v063.i18.

See Also

trW, lagsarlm, nb2listw, mvrnorm, plot.mcmc, summary.mcmc, HPDinterval

Examples

require("sf", quietly=TRUE)
columbus <- st_read(system.file("shapes/columbus.gpkg", package="spData")[1], quiet=TRUE)
#require("spdep", quietly=TRUE)
col.gal.nb <- spdep::read.gal(system.file("weights/columbus.gal", package="spData")[1])
listw <- spdep::nb2listw(col.gal.nb)
ev <- eigenw(listw)
lobj <- lagsarlm(CRIME ~ INC + HOVAL, columbus, listw,
 control=list(pre_eig=ev))
summary(lobj)
mobj <- lagsarlm(CRIME ~ INC + HOVAL, columbus, listw, Durbin=TRUE,
 control=list(pre_eig=ev))
summary(mobj)
mobj1 <- lagsarlm(CRIME ~ INC + HOVAL, columbus, listw, Durbin= ~ INC,
 control=list(pre_eig=ev))
summary(mobj1)
W <- as(listw, "CsparseMatrix")
trMatc <- trW(W, type="mult")
trMC <- trW(W, type="MC")
set.seed(1)
impacts(lobj, listw=listw)
impacts(lobj, tr=trMatc)
impacts(lobj, tr=trMC)
impacts(lobj, evalues=ev)
library(coda)
lobjIQ5 <- impacts(lobj, tr=trMatc, R=200, Q=5)
summary(lobjIQ5, zstats=TRUE, short=TRUE)
summary(lobjIQ5, zstats=TRUE, short=TRUE, reportQ=TRUE)
impacts(mobj, listw=listw)
impacts(mobj, tr=trMatc)
impacts(mobj, tr=trMC)
impacts(mobj1, tr=trMatc)
impacts(mobj1, listw=listw)
## Not run: 
try(impacts(mobj, evalues=ev), silent=TRUE)

## End(Not run)
summary(impacts(mobj, tr=trMatc, R=200), short=TRUE, zstats=TRUE)
summary(impacts(mobj1, tr=trMatc, R=200), short=TRUE, zstats=TRUE)
xobj <- lmSLX(CRIME ~ INC + HOVAL, columbus, listw)
summary(impacts(xobj))
eobj <- errorsarlm(CRIME ~ INC + HOVAL, columbus, listw, etype="emixed")
summary(impacts(eobj), adjust_k=TRUE)
## Not run: 
mobj1 <- lagsarlm(CRIME ~ INC + HOVAL, columbus, listw, type="mixed", 
method="Matrix", control=list(fdHess=TRUE))
summary(mobj1)
set.seed(1)
summary(impacts(mobj1, tr=trMatc, R=1000), zstats=TRUE, short=TRUE)
summary(impacts(mobj, tr=trMatc, R=1000), zstats=TRUE, short=TRUE)
mobj2 <- lagsarlm(CRIME ~ INC + HOVAL, columbus, listw, type="mixed", 
method="Matrix", control=list(fdHess=TRUE, optimHess=TRUE))
summary(impacts(mobj2, tr=trMatc, R=1000), zstats=TRUE, short=TRUE)
mobj3 <- lagsarlm(CRIME ~ INC + HOVAL, columbus, listw, type="mixed", 
method="spam", control=list(fdHess=TRUE))
summary(impacts(mobj3, tr=trMatc, R=1000), zstats=TRUE, short=TRUE)

## End(Not run)
## Not run: 
data(boston, package="spData")
Wb <- as(spdep::nb2listw(boston.soi), "CsparseMatrix")
trMatb <- trW(Wb, type="mult")
gp2mMi <- lagsarlm(log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + 
I(RM^2) +  AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT), 
data=boston.c, spdep::nb2listw(boston.soi), type="mixed", method="Matrix", 
control=list(fdHess=TRUE), trs=trMatb)
summary(gp2mMi)
summary(impacts(gp2mMi, tr=trMatb, R=1000), zstats=TRUE, short=TRUE)
#data(house, package="spData")
#lw <- spdep::nb2listw(LO_nb)
#form <- formula(log(price) ~ age + I(age^2) + I(age^3) + log(lotsize) +
#   rooms + log(TLA) + beds + syear)
#lobj <- lagsarlm(form, house, lw, method="Matrix",
# control=list(fdHess=TRUE), trs=trMat)
#summary(lobj)
#loobj <- impacts(lobj, tr=trMat, R=1000)
#summary(loobj, zstats=TRUE, short=TRUE)
#lobj1 <- stsls(form, house, lw)
#loobj1 <- impacts(lobj1, tr=trMat, R=1000)
#summary(loobj1, zstats=TRUE, short=TRUE)
#mobj <- lagsarlm(form, house, lw, type="mixed",
# method="Matrix", control=list(fdHess=TRUE), trs=trMat)
#summary(mobj)
#moobj <- impacts(mobj, tr=trMat, R=1000)
#summary(moobj, zstats=TRUE, short=TRUE)

## End(Not run)

Compute SAR generating operator

Description

Computes the matrix used for generating simultaneous autoregressive random variables, for a given value of rho, a neighbours list object or a matrix, a chosen coding scheme style, and optionally a list of general weights corresponding to neighbours.

Usage

invIrM(neighbours, rho, glist=NULL, style="W", method="solve",
 feasible=NULL)
invIrW(x, rho, method="solve", feasible=NULL)

Arguments

neighbours

an object of class nb

rho

autoregressive parameter

glist

list of general weights corresponding to neighbours

style

style can take values W, B, C, and S

method

default solve, can also take value chol

feasible

if NULL, the given value of rho is checked to see if it lies within its feasible range, if TRUE, the test is not conducted

x

either a listw object from for example nb2listw or a square spatial weights matrix, optionally a sparse matrix

Details

The invIrW function generates the full weights matrix V, checks that rho lies in its feasible range between 1/min(eigen(V)) and 1/max(eigen(V)), and returns the nxn inverted matrix

(IρV)1(I - \rho V)^{-1}

. With method=“chol” (only for a listw object), Cholesky decomposition is used, thanks to contributed code by Markus Reder and Werner Mueller.

Note that, in some situations in simulation, it may matter that the random vector from rnorm or similar will not be exactly N(0, 1), and it will also contain random amounts of spatial autocorrelection itself, which will mix with the spatial autocorrelection injected by the process operator

(IρV)1(I - \rho V)^{-1}

. In addition, it will not follow the stipulated distribution exactly either, so that several steps may be needed to scale the random vector, to remove artefacts coming from its deviance from distributional parameters, and to remove random spatial autocorrelation - see the examples below. Thanks to Rune Østergaard Pedersen for bring up this question.

The powerWeights function uses power series summation to cumulate the product

(IρV)1%%X(I - \rho V)^{-1} \%*\% X

from

(I+ρV+(ρV)2+)%%X(I + \rho V + (\rho V)^2 + \dots) \%*\% X

, which can be done by storing only sparse V and several matrices of the same dimensions as X. This makes it possible to handle larger spatial weights matrices, but is sensitive to the power weights order and the tolerance arguments when the spatial coefficient is close to its bounds, leading to incorrect estimates of the implied inverse matrix.

Value

An nxn matrix with a "call" attribute; the powerWeights function returns a matrix of the same dimensions as X which has been multipled by the power series equivalent of the dense matrix

(IρV)1(I - \rho V)^{-1}

.

Note

Before version 0.6-10, powerWeights only worked correctly for positive rho, with differences from true values increasing as rho approached -1, and exploding between -1 and the true negative bound.

Author(s)

Roger Bivand [email protected]

References

Tiefelsdorf, M., Griffith, D. A., Boots, B. 1999 A variance-stabilizing coding scheme for spatial link matrices, Environment and Planning A, 31, pp. 165-180; Tiefelsdorf, M. 2000 Modelling spatial processes, Lecture notes in earth sciences, Springer, p. 76; Haining, R. 1990 Spatial data analysis in the social and environmental sciences, Cambridge University Press, p. 117; Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion, p. 152; Reder, M. and Mueller, W. (2007) An Improvement of the invIrM Routine of the Geostatistical R-package spdep by Cholesky Inversion, Statistical Projects, LV No: 238.205, SS 2006, Department of Applied Statistics, Johannes Kepler University, Linz

See Also

nb2listw

Examples

library(spdep)
nb7rt <- cell2nb(7, 7, torus=TRUE)
lw <- nb2listw(nb7rt, style="W")
set.seed(1)
x <- matrix(sample(rnorm(500*length(nb7rt))), nrow=length(nb7rt))
if (requireNamespace("spatialreg", quietly=TRUE)) {
# Only needed in some simulation settings where the input and
# output distributions must agree in all but autocorrelation
if (FALSE) {
e <- spatialreg::eigenw(lw)
x <- apply(x, 2, scale)
st <- apply(x, 2, function(x) shapiro.test(x)$p.value)
x <- x[, (st > 0.2 & st < 0.8)]
x <- apply(x, 2, function(v) spatialreg::residuals.spautolm(
 spatialreg::spautolm(v ~ 1, listw=lw, method="eigen",
 control=list(pre_eig=e, fdHess=FALSE))))
x <- apply(x, 2, scale)
}
res0 <- apply(invIrM(nb7rt, rho=0.0, method="chol",
 feasible=TRUE) %*% x, 2, function(x) var(x)/length(x))
res2 <- apply(invIrM(nb7rt, rho=0.2, method="chol",
 feasible=TRUE) %*% x, 2, function(x) var(x)/length(x))
res4 <- apply(invIrM(nb7rt, rho=0.4, method="chol",
 feasible=TRUE) %*% x, 2, function(x) var(x)/length(x))
res6 <- apply(invIrM(nb7rt, rho=0.6, method="chol",
 feasible=TRUE) %*% x, 2, function(x) var(x)/length(x))
res8 <- apply(invIrM(nb7rt, rho=0.8, method="chol",
 feasible=TRUE) %*% x, 2, function(x) var(x)/length(x))
res9 <- apply(invIrM(nb7rt, rho=0.9, method="chol",
 feasible=TRUE) %*% x, 2, function(x) var(x)/length(x))
plot(density(res9), col="red", xlim=c(-0.01, max(density(res9)$x)),
  ylim=range(density(res0)$y),
  xlab="estimated variance of the mean",
  main=expression(paste("Effects of spatial autocorrelation for different ",
    rho, " values")))
lines(density(res0), col="black")
lines(density(res2), col="brown")
lines(density(res4), col="green")
lines(density(res6), col="orange")
lines(density(res8), col="pink")
legend(c(-0.02, 0.01), c(7, 25),
 legend=c("0.0", "0.2", "0.4", "0.6", "0.8", "0.9"),
 col=c("black", "brown", "green", "orange", "pink", "red"), lty=1, bty="n")
}
## Not run: 
x <- matrix(rnorm(length(nb7rt)), ncol=1)
system.time(e <- invIrM(nb7rt, rho=0.9, method="chol", feasible=TRUE) %*% x)
system.time(e <- invIrM(nb7rt, rho=0.9, method="chol", feasible=NULL) %*% x)
system.time(e <- invIrM(nb7rt, rho=0.9, method="solve", feasible=TRUE) %*% x)
system.time(e <- invIrM(nb7rt, rho=0.9, method="solve", feasible=NULL) %*% x)

## End(Not run)

Matrix exponential spatial lag model

Description

The function fits a matrix exponential spatial lag model, using optim to find the value of alpha, the spatial coefficient.

Usage

lagmess(formula, data = list(), listw, zero.policy = NULL, na.action = na.fail,
 q = 10, start = -2.5, control=list(), method="BFGS", verbose=NULL,
 use_expm=FALSE)

Arguments

formula

a symbolic description of the model to be fit. The details of model specification are given for lm()

data

an optional data frame containing the variables in the model. By default the variables are taken from the environment which the function is called.

listw

a listw object created for example by spdep::nb2listw()

zero.policy

default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA - causing lagmess() to terminate with an error

na.action

a function (default options("na.action")), can also be na.omit or na.exclude with consequences for residuals and fitted values - in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to nb2listw may be subsetted.

q

default 10; number of powers of the spatial weights to use

start

starting value for numerical optimization, should be a small negative number

control

control parameters passed to optim

method

default BFGS, method passed to optim

verbose

default NULL, use global option value; if TRUE report function values during optimization

use_expm

default FALSE; if TRUE use expm::expAtv instead of a truncated power series of W

Details

The underlying spatial lag model:

y=ρWy+Xβ+εy = \rho W y + X \beta + \varepsilon

where ρ\rho is the spatial parameter may be fitted by maximum likelihood. In that case, the log likelihood function includes the logarithm of cumbersome Jacobian term IρW|I - \rho W|. If we rewrite the model as:

Sy=Xβ+εS y = X \beta + \varepsilon

we see that in the ML case Sy=(IρW)yS y = (I - \rho W) y. If W is row-stochastic, S may be expressed as a linear combination of row-stochastic matrices. By pre-computing the matrix [y,Wy,W2y,...,Wq1y][y, Wy, W^2y, ..., W^{q-1}y], the term Sy(α)S y (\alpha) can readily be found by numerical optimization using the matrix exponential approach. α\alpha and ρ\rho are related as ρ=1expα\rho = 1 - \exp{\alpha}, conditional on the number of matrix power terms taken q.

Value

The function returns an object of class Lagmess with components:

lmobj

the lm object returned after fitting alpha

alpha

the spatial coefficient

alphase

the standard error of the spatial coefficient using the numerical Hessian

rho

the value of rho implied by alpha

bestmess

the object returned by optim

q

the number of powers of the spatial weights used

start

the starting value for numerical optimization used

na.action

(possibly) named vector of excluded or omitted observations if non-default na.action argument used

nullLL

the log likelihood of the aspatial model for the same data

Author(s)

Roger Bivand [email protected] and Eric Blankmeyer

References

J. P. LeSage and R. K. Pace (2007) A matrix exponential specification. Journal of Econometrics, 140, 190-214; J. P. LeSage and R. K. Pace (2009) Introduction to Spatial Econometrics. CRC Press, Chapter 9.

See Also

lagsarlm, optim

Examples

#require(spdep, quietly=TRUE)
data(baltimore, package="spData")
baltimore$AGE <- ifelse(baltimore$AGE < 1, 1, baltimore$AGE)
lw <- spdep::nb2listw(spdep::knn2nb(spdep::knearneigh(cbind(baltimore$X, baltimore$Y), k=7)))
obj1 <- lm(log(PRICE) ~ PATIO + log(AGE) + log(SQFT),
 data=baltimore)
spdep::lm.morantest(obj1, lw)
spdep::lm.LMtests(obj1, lw, test="all")
system.time(obj2 <- lagmess(log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data=baltimore, listw=lw))
(x <- summary(obj2))
coef(x)
has_expm <- require("expm", quietly=TRUE)
if (has_expm) {
system.time(
obj2a <- lagmess(log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data=baltimore, listw=lw, use_expm=TRUE)
)
summary(obj2a)
}
obj3 <- lagsarlm(log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data=baltimore, listw=lw)
summary(obj3)

data(boston, package="spData")
lw <- spdep::nb2listw(boston.soi)
gp2 <- lagsarlm(log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2)
 +  AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT),
 data=boston.c, lw, method="Matrix")
summary(gp2)
gp2a <- lagmess(CMEDV ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2)
 +  AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT),
 data=boston.c, lw)
summary(gp2a)

Find extreme eigenvalues of binary symmetric spatial weights

Description

The functions find extreme eigenvalues of binary symmetric spatial weights, when these form planar graphs; general weights are not permiited. l_max finds the largest eigenvalue using Rayleigh quotient methods of any “listw” object. lextrB first calls l_max, and uses its output to find the smallest eigenvalue in addition for binary symmetric spatial weights. lextrW extends these to find the smallest eigenvalue for intrinsically symmetric row-standardized binary weights matrices (transformed to symmetric through similarity internally). lextrS does the same for variance-stabilized (“S” style) intrinsically symmetric binary weights matrices (transformed to symmetric through similarity internally).

Usage

lextrB(lw, zero.policy = TRUE, control = list())
lextrW(lw, zero.policy=TRUE, control=list())
lextrS(lw, zero.policy=TRUE, control=list())
l_max(lw, zero.policy=TRUE, control=list())

Arguments

lw

a binary symmetric listw object from, for example, nb2listw with style “B” for lextrB, style “W” for lextrW and style “S” for lextrS; for l_max, the object may be asymmetric and does not have to be binary

zero.policy

default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA

control

a list of control arguments

Value

The functions return approximations to the extreme eigenvalues with the eigenvectors returned as attributes of this object.

Control arguments

trace

report values in while loops, default NULL assuming FALSE; logical

tol

tolerance for breaking while loops, default .Machine$double.eps^(1/2); numeric

maxiter

maximum number of iterations in while loops, default 6 * (length(lw$neighbours) - 2; integer

useC

use C code, default TRUE, logical (not in l_max)

Note

It may be necessary to modify control arguments if warnings about lack of convergence are seen.

Author(s)

Roger Bivand, Yongwan Chun, Daniel Griffith

References

Griffith, D. A. (2004). Extreme eigenfunctions of adjacency matrices for planar graphs employed in spatial analyses. Linear Algebra and its Applications, 388:201–219.

Examples

data(boston, package="spData")
#require(spdep, quietly=TRUE)
ab.listb <- spdep::nb2listw(boston.soi, style="B")
er <- range(eigenw(ab.listb))
er
res_1 <- lextrB(ab.listb)
c(res_1)
run <- FALSE
if (require("RSpectra", quietly=TRUE)) run <- TRUE
if (run) {
B <- as(ab.listb, "CsparseMatrix")
eigs(B, k=1, which="SR")$values
}
if (run) {
eigs(B, k=1, which="LR")$values
}
k5 <- spdep::knn2nb(spdep::knearneigh(boston.utm, k=5))
c(l_max(spdep::nb2listw(k5, style="B")))
max(Re(eigenw(spdep::nb2listw(k5, style="B"))))
c(l_max(spdep::nb2listw(k5, style="C")))
max(Re(eigenw(spdep::nb2listw(k5, style="C"))))
ab.listw <- spdep::nb2listw(boston.soi, style="W")
er <- range(eigenw(similar.listw(ab.listw)))
er
res_1 <- lextrW(ab.listw)
c(res_1)
if (run) {
B <- as(similar.listw(ab.listw), "CsparseMatrix")
eigs(B, k=1, which="SR")$values
}
if (run) {
eigs(B, k=1, which="LR")$values
}
## Not run: 
ab.listw <- spdep::nb2listw(boston.soi, style="S")
er <- range(eigenw(similar.listw(ab.listw)))
er
res_1 <- lextrS(ab.listw)
c(res_1)

## End(Not run)
if (run) {
B <- as(similar.listw(ab.listw), "CsparseMatrix")
eigs(B, k=1, which="SR")$values
}
if (run) {
eigs(B, k=1, which="LR")$values
}

Spatial Durbin linear (SLX, spatially lagged X) model

Description

lmSLX fits an lm model augmented with the spatially lagged RHS variables, including the lagged intercept when the spatial weights are not row-standardised. create_WX creates spatially lagged RHS variables, and is exposed for use in model fitting functions.

Usage

lmSLX(formula, data = list(), listw, na.action, weights=NULL, Durbin=TRUE,
 zero.policy=NULL, return_impacts=TRUE)
## S3 method for class 'SlX'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'SlX'
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)
## S3 method for class 'summary.SlX'
print(x, digits = max(3L, getOption("digits") - 3L),
 symbolic.cor = x$symbolic.cor, signif.stars = getOption("show.signif.stars"), ...)
## S3 method for class 'SlX'
impacts(obj, ...)
## S3 method for class 'WXimpact'
print(x, ...)
## S3 method for class 'WXimpact'
summary(object, ..., adjust_k=(attr(object, "type") == "SDEM"))
## S3 method for class 'SlX'
predict(object, newdata, listw, zero.policy=NULL, ...)
create_WX(x, listw, zero.policy=NULL, prefix="")

Arguments

formula

a symbolic description of the model to be fit. The details of model specification are given for lm()

data

an optional data frame containing the variables in the model. By default the variables are taken from the environment which the function is called.

listw

a listw object created for example by nb2listw

na.action

a function (default options("na.action")), can also be na.omit or na.exclude with consequences for residuals and fitted values - in these cases the spatial weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to nb2listw may be subsetted.

weights

an optional vector of weights to be used in the fitting process. Non-NULL weights can be used to indicate that different observations have different variances (with the values in weights being inversely proportional to the variances); or equivalently, when the elements of weights are positive integers w_i, that each response y_i is the mean of w_i unit-weight observations (including the case that there are w_i observations equal to y_i and the data have been summarized) - lm

Durbin

default TRUE for lmSLX (Durbin model including WX); if TRUE, full spatial Durbin model; if a formula object, the subset of explanatory variables to lag

zero.policy

default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA

return_impacts

default TRUE; may be set FALSE to avoid problems calculating impacts with aliased variables

digits

the number of significant digits to use when printing

correlation

logical; if TRUE, the correlation matrix of the estimated parameters is returned and printed

symbolic.cor

logical. If TRUE, print the correlations in a symbolic form (see 'symnum') rather than as numbers

signif.stars

logical. If TRUE, 'significance stars' are printed for each coefficient

obj

A spatial regression object created by lmSLX

...

Arguments passed through

prefix

default empty string, may be “lag” in some cases

x, object

model matrix to be lagged; lagImpact objects created by impacts methods

adjust_k

default TRUE if SDEM else FALSE, adjust internal OLS SDEM standard errors by dividing by n rather than (n-k) (default changed and bug fixed after 0.7-8; standard errors now ML in SDEM summary and impacts summary and identical - for SLX use FALSE)

newdata

data frame in which to predict — if NULL, predictions are for the data on which the model was fitted. Should have row names corresponding to region.id. If row names are exactly the same than the ones used for training, it uses in-sample predictors for forecast.

Value

The lmSLX function returns an “lm” object with a “mixedImps” list of three impact matrixes (impacts and standard errors) for direct, indirect and total impacts; total impacts calculated using a simplified local copy of the estimable function from the gmodels package.

Author(s)

Roger Bivand [email protected]

See Also

lm

Examples

data(oldcol, package="spdep")
lw <- spdep::nb2listw(COL.nb, style="W")
COL.SLX <- lmSLX(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw)
summary(COL.SLX)
summary(impacts(COL.SLX))
COL.SLX <- lmSLX(CRIME ~ INC + HOVAL + I(HOVAL^2), data=COL.OLD, listw=lw, Durbin=TRUE)
summary(impacts(COL.SLX))
summary(COL.SLX)
COL.SLX <- lmSLX(CRIME ~ INC + HOVAL + I(HOVAL^2), data=COL.OLD, listw=lw, Durbin=~INC)
summary(impacts(COL.SLX))
summary(COL.SLX)
COL.SLX <- lmSLX(CRIME ~ INC, data=COL.OLD, listw=lw)
summary(COL.SLX)
summary(impacts(COL.SLX))
## Not run: 
crds <- cbind(COL.OLD$X, COL.OLD$Y)
mdist <- sqrt(sum(diff(apply(crds, 2, range))^2))
dnb <- spdep::dnearneigh(crds, 0, mdist)
dists <- spdep::nbdists(dnb, crds)
f <- function(x, form, data, dnb, dists, verbose) {
  glst <- lapply(dists, function(d) 1/(d^x))
  lw <- spdep::nb2listw(dnb, glist=glst, style="B")
  res <- logLik(lmSLX(form=form, data=data, listw=lw))
  if (verbose) cat("power:", x, "logLik:", res, "\n")
  res
}
opt <- optimize(f, interval=c(0.1, 4), form=CRIME ~ INC + HOVAL,
 data=COL.OLD, dnb=dnb, dists=dists, verbose=TRUE, maximum=TRUE)
glst <- lapply(dists, function(d) 1/(d^opt$maximum))
lw <- spdep::nb2listw(dnb, glist=glst, style="B")
SLX <- lmSLX(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw)
summary(SLX)
summary(impacts(SLX))

## End(Not run)
COL.SLX <- lmSLX(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw)
pslx0 <- predict(COL.SLX)
pslx1 <- predict(COL.SLX, newdata=COL.OLD, listw=lw)
all.equal(pslx0, pslx1)
COL.OLD1 <- COL.OLD
COL.OLD1$INC <- COL.OLD1$INC + 1
pslx2 <- predict(COL.SLX, newdata=COL.OLD1, listw=lw)
sum(coef(COL.SLX)[c(2,4)])
mean(pslx2-pslx1)

Likelihood ratio test

Description

The LR.Sarlm() function provides a likelihood ratio test for objects for which a logLik() function exists for their class, or for objects of class logLik. LR1.Sarlm() and Wald1.Sarlm() are used internally in summary.Sarlm(), but may be accessed directly; they report the values respectively of LR and Wald tests for the absence of spatial dependence in spatial lag or error models. The spatial Hausman test is available for models fitted with errorSarlm and GMerrorsar.

Usage

LR.Sarlm(x, y)
## S3 method for class 'Sarlm'
logLik(object, ...)
LR1.Sarlm(object)
Wald1.Sarlm(object)
## S3 method for class 'Sarlm'
Hausman.test(object, ..., tol=NULL)
## S3 method for class 'Sarlm'
anova(object, ...)
bptest.Sarlm(object, varformula=NULL, studentize = TRUE, data=list())
## S3 method for class 'Sarlm'
impacts(obj, ..., tr, R = NULL, listw = NULL, evalues=NULL,
 useHESS = NULL, tol = 1e-06, empirical = FALSE, Q=NULL)

Arguments

x

a logLik object or an object for which a logLik() function exists

y

a logLik object or an object for which a logLik() function exists

object, obj

a Sarlm object

...

further arguments passed to or from other methods

varformula

a formula describing only the potential explanatory variables for the variance (no dependent variable needed). By default the same explanatory variables are taken as in the main regression model

studentize

logical. If set to TRUE Koenker's studentized version of the test statistic will be used.

data

an optional data frame containing the variables in the varformula

tr

A vector of traces of powers of the spatial weights matrix created using trW, for approximate impact measures; if not given, listw must be given for exact measures (for small to moderate spatial weights matrices); the traces must be for the same spatial weights as were used in fitting the spatial regression, and must be row-standardised

listw

If tr is not given, a spatial weights object as created by nb2listw; they must be the same spatial weights as were used in fitting the spatial regression, but do not have to be row-standardised

evalues

vector of eigenvalues of spatial weights matrix for impacts calculations

R

If given, simulations are used to compute distributions for the impact measures, returned as mcmc objects; the objects are used for convenience but are not output by an MCMC process

useHESS

Use the Hessian approximation (if available) even if the asymptotic coefficient covariance matrix is available; used for comparing methods

tol

Argument passed to mvrnorm and solve: tolerance (relative to largest variance) for numerical lack of positive-definiteness in the coefficient covariance matrix

empirical

Argument passed to mvrnorm (default FALSE): if true, the coefficients and their covariance matrix specify the empirical not population mean and covariance matrix

Q

default NULL, else an integer number of cumulative power series impacts to calculate if tr is given

Value

The tests return objects of class htest with:

statistic

value of statistic

parameter

degrees of freedom

p.value

Probability value

estimate

varies with test

method

description of test method

logLik.Sarlm() returns an object of class logLik LR1.Sarlm, Hausman.Sarlm and Wald1.Sarlm returm objects of class htest

Note

The numbers of degrees of freedom returned by logLik.Sarlm() include nuisance parameters, that is the number of regression coefficients, plus sigma, plus spatial parameter esitmate(s).

Author(s)

Roger Bivand [email protected], bptest: Torsten Hothorn and Achim Zeileis, modified by Roger Bivand

References

LeSage J and RK Pace (2009) Introduction to Spatial Econometrics. CRC Press, Boca Raton, pp. 61–63; Pace RK and LeSage J (2008) A spatial Hausman test. Economics Letters 101, 282–284. T.S. Breusch & A.R. Pagan (1979), A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica 47, 1287–1294

W. Krämer & H. Sonnberger (1986), The Linear Regression Model under Test. Heidelberg: Physica.

L. Anselin (1988) Spatial econometrics: methods and models. Dordrecht: Kluwer, pp. 121–122.

See Also

logLik.lm, anova.Sarlm

Examples

require("sf", quietly=TRUE)
columbus <- st_read(system.file("shapes/columbus.gpkg", package="spData")[1], quiet=TRUE)
#require("spdep", quietly=TRUE)
col.gal.nb <- spdep::read.gal(system.file("weights/columbus.gal", package="spData")[1])
lm.mod <- lm(CRIME ~ HOVAL + INC, data=columbus)
lag <- lagsarlm(CRIME ~ HOVAL + INC, data=columbus, spdep::nb2listw(col.gal.nb))
mixed <- lagsarlm(CRIME ~ HOVAL + INC, data=columbus, spdep::nb2listw(col.gal.nb), type="mixed")
error <- errorsarlm(CRIME ~ HOVAL + INC, data=columbus, spdep::nb2listw(col.gal.nb))
Hausman.test(error)
LR.Sarlm(mixed, error)
anova(lag, lm.mod)
anova(lag, error, mixed)
AIC(lag, error, mixed)
bptest.Sarlm(error)
bptest.Sarlm(error, studentize=FALSE)

MCMC sample from fitted spatial regression

Description

The MCMCsamp method uses rwmetrop, a random walk Metropolis algorithm, from LearnBayes to make MCMC samples from fitted maximum likelihood spatial regression models.

Usage

MCMCsamp(object, mcmc = 1L, verbose = NULL, ...)
## S3 method for class 'Spautolm'
MCMCsamp(object, mcmc = 1L, verbose = NULL, ...,
 burnin = 0L, scale=1, listw, control = list())
## S3 method for class 'Sarlm'
MCMCsamp(object, mcmc = 1L, verbose = NULL, ...,
    burnin=0L, scale=1, listw, listw2=NULL, control=list())

Arguments

object

A spatial regression model object fitted by maximum likelihood with spautolm

mcmc

The number of MCMC iterations after burnin

verbose

default NULL, use global option value; if TRUE, reports progress

...

Arguments passed through

burnin

The number of burn-in iterations for the sampler

scale

a positive scale parameter

listw, listw2

listw objects created for example by nb2listw; should be the same object(s) used for fitting the model

control

list of extra control arguments - see spautolm

Value

An object of class “mcmc” suited to coda, with attributes: “accept” acceptance rate; “type” input ML fitted model type “SAR”, “CAR”, “SMA”, “lag”, “mixed”, “error”, “sac”, “sacmixed”; “timings” run times

Note

If the acceptance rate is below 0.05, a warning will be issued; consider increasing mcmc.

Author(s)

Roger Bivand [email protected]

References

Jim Albert (2007) Bayesian Computation with R, Springer, New York, pp. 104-105.

See Also

rwmetrop, spautolm, lagsarlm, errorsarlm, sacsarlm

Examples

require("sf", quietly=TRUE)
nydata <- st_read(system.file("shapes/NY8_bna_utm18.gpkg", package="spData")[1], quiet=TRUE)
suppressMessages(nyadjmat <- as.matrix(foreign::read.dbf(system.file(
 "misc/nyadjwts.dbf", package="spData")[1])[-1]))
suppressMessages(ID <- as.character(names(foreign::read.dbf(system.file(
 "misc/nyadjwts.dbf", package="spData")[1]))[-1]))
identical(substring(ID, 2, 10), substring(as.character(nydata$AREAKEY), 2, 10))
#require("spdep", quietly=TRUE)
listw_NY <- spdep::mat2listw(nyadjmat, as.character(nydata$AREAKEY), style="B")
esar1f <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, family="SAR", method="eigen")
summary(esar1f)
res <- MCMCsamp(esar1f, mcmc=1000, burnin=200, listw=listw_NY)
summary(res)
## Not run: 
esar1fw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, weights=POP8, family="SAR", method="eigen")
summary(esar1fw)
res <- MCMCsamp(esar1fw, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
ecar1f <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, family="CAR", method="eigen")
summary(ecar1f)
res <- MCMCsamp(ecar1f, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
esar1fw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, weights=POP8, family="SAR", method="eigen")
summary(esar1fw)
res <- MCMCsamp(esar1fw, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
ecar1fw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, weights=POP8, family="CAR", method="eigen")
summary(ecar1fw)
res <- MCMCsamp(ecar1fw, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)

## End(Not run)
esar0 <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY)
summary(esar0)
res <- MCMCsamp(esar0, mcmc=1000, burnin=200, listw=listw_NY)
summary(res)
## Not run: 
esar0w <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, weights=POP8)
summary(esar0)
res <- MCMCsamp(esar0w, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
esar1 <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, etype="emixed")
summary(esar1)
res <- MCMCsamp(esar1, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
lsar0 <- lagsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY)
summary(lsar0)
res <- MCMCsamp(lsar0, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
lsar1 <- lagsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, type="mixed")
summary(lsar1)
res <- MCMCsamp(lsar1, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
ssar0 <- sacsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY)
summary(ssar0)
res <- MCMCsamp(ssar0, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
ssar1 <- sacsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, type="sacmixed")
summary(ssar1)
res <- MCMCsamp(ssar1, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)

## End(Not run)

Moran eigenvector GLM filtering

Description

The Moran eigenvector filtering function is intended to remove spatial autocorrelation from the residuals of generalised linear models. It uses brute force eigenvector selection to reach a subset of such vectors to be added to the RHS of the GLM model to reduce residual autocorrelation to below the specified alpha value. Since eigenvector selection only works on symmetric weights, the weights are made symmetric before the eigenvectors are found (from spdep 0.5-50).

Usage

ME(formula, data=list(), family = gaussian, weights, offset,
 na.action=na.fail,listw=NULL, alpha=0.05, nsim=99, verbose=NULL,
 stdev=FALSE, zero.policy=NULL)

Arguments

formula

a symbolic description of the model to be fit

data

an optional data frame containing the variables in the model

family

a description of the error distribution and link function to be used in the model

weights

an optional vector of weights to be used in the fitting process

offset

this can be used to specify an a priori known component to be included in the linear predictor during fitting

na.action

a function (default options("na.action")), can also be na.omit or na.exclude with consequences for residuals and fitted values - in these cases the spatial weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to nb2listw may be subsetted.

listw

a listw object created for example by nb2listw

alpha

used as a stopping rule to choose all eigenvectors up to and including the one with a p-value exceeding alpha

nsim

number of permutations for permutation bootstrap for finding p-values

verbose

default NULL, use global option value; if TRUE report eigenvectors selected

stdev

if TRUE, p-value calculated from bootstrap permutation standard deviate using pnorm with alternative="greater", if FALSE the Hope-type p-value

zero.policy

default NULL, use global option value; if FALSE stop with error for any empty neighbour sets, if TRUE permit the weights list to be formed with zero-length weights vectors

Details

The eigenvectors for inclusion are chosen by calculating the empirical Moran's I values for the initial model plus each of the doubly centred symmetric spatial weights matrix eigenvectors in turn. Then the first eigenvector is chosen as that with the lowest Moran's I value. The procedure is repeated until the lowest remaining Moran's I value has a permutation-based probability value above alpha. The probability value is either Hope-type or based on using the mean and standard deviation of the permutations to calculate ZI based on the stdev argument.

Value

An object of class Me_res:

selection

a matrix summarising the selection of eigenvectors for inclusion, with columns:

Eigenvector

number of selected eigenvector

ZI

permutation-based standardized deviate of Moran's I if stdev=TRUE

pr(ZI)

probability value: if stdev=TRUE of the permutation-based standardized deviate, if FALSE the Hope-type probability value, in both cases on-sided

The first row is the value at the start of the search

vectors

a matrix of the selected eigenvectors in order of selection

Author(s)

Roger Bivand and Pedro Peres-Neto

References

Dray S, Legendre P and Peres-Neto PR (2005) Spatial modeling: a comprehensive framework for principle coordinate analysis of neigbbor matrices (PCNM), Ecological Modelling; Griffith DA and Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses.

See Also

SpatialFiltering, glm

Examples

#require("spdep", quietly=TRUE)
data(hopkins, package="spData")
hopkins_part <- hopkins[21:36,36:21]
hopkins_part[which(hopkins_part > 0, arr.ind=TRUE)] <- 1
hopkins.rook.nb <- spdep::cell2nb(16, 16, type="rook")
glmbase <- glm(c(hopkins_part) ~ 1, family="binomial")
lw <- spdep::nb2listw(hopkins.rook.nb, style="B")
set.seed(123)
system.time(MEbinom1 <- ME(c(hopkins_part) ~ 1, family="binomial",
 listw=lw, alpha=0.05, verbose=TRUE, nsim=49))
glmME <- glm(c(hopkins_part) ~ 1 + fitted(MEbinom1), family="binomial")
#anova(glmME, test="Chisq")
coef(summary(glmME))
anova(glmbase, glmME, test="Chisq")
## Not run: 
require("sf", quietly=TRUE)
columbus <- st_read(system.file("shapes/columbus.gpkg", package="spData")[1], quiet=TRUE)
#require("spdep", quietly=TRUE)
col.gal.nb <- spdep::read.gal(system.file("weights/columbus.gal", package="spData")[1])
lw <- spdep::nb2listw(col.gal.nb)
lmbase <- lm(CRIME ~ INC + HOVAL, data=columbus)
lagcol <- SpatialFiltering(CRIME ~ 1, ~ INC + HOVAL, data=columbus,
 nb=col.gal.nb, style="W", alpha=0.1, verbose=TRUE)
lagcol
lmlag <- lm(CRIME ~ INC + HOVAL + fitted(lagcol), data=columbus)
anova(lmbase, lmlag)
set.seed(123)
system.time(lagcol1 <- ME(CRIME ~ INC + HOVAL, data=columbus, family="gaussian",
 listw=lw, alpha=0.1, verbose=TRUE))
lagcol1
lmlag1 <- lm(CRIME ~ INC + HOVAL + fitted(lagcol1), data=columbus)
anova(lmbase, lmlag1)

set.seed(123)
lagcol2 <- ME(CRIME ~ INC + HOVAL, data=columbus, family="gaussian",
 listw=lw, alpha=0.1, stdev=TRUE, verbose=TRUE)
lagcol2
lmlag2 <- lm(CRIME ~ INC + HOVAL + fitted(lagcol2), data=columbus)
anova(lmbase, lmlag2)
NA.columbus <- columbus
NA.columbus$CRIME[20:25] <- NA
COL.ME.NA <- ME(CRIME ~ INC + HOVAL, data=NA.columbus, family="gaussian",
 listw=lw, alpha=0.1, stdev=TRUE, verbose=TRUE,
 na.action=na.exclude)
COL.ME.NA$na.action
summary(lm(CRIME ~ INC + HOVAL + fitted(COL.ME.NA), data=NA.columbus,
 na.action=na.exclude))
nc.sids <- st_read(system.file("shapes/sids.gpkg", package="spData")[1], quiet=TRUE)
rn <- as.character(nc.sids$FIPS)
ncCC89_nb <- spdep::read.gal(system.file("weights/ncCC89.gal", package="spData")[1],
 region.id=rn)
ncCR85_nb <- spdep::read.gal(system.file("weights/ncCR85.gal", package="spData")[1],
 region.id=rn)
glmbase <- glm(SID74 ~ 1, data=nc.sids, offset=log(BIR74),
 family="poisson")
set.seed(123)
MEpois1 <- ME(SID74 ~ 1, data=nc.sids, offset=log(BIR74),
 family="poisson", listw=spdep::nb2listw(ncCR85_nb, style="B"), alpha=0.2, verbose=TRUE)
MEpois1
glmME <- glm(SID74 ~ 1 + fitted(MEpois1), data=nc.sids, offset=log(BIR74),
 family="poisson")
anova(glmME, test="Chisq")
anova(glmbase, glmME, test="Chisq")

## End(Not run)

Spatial simultaneous autoregressive model estimation by maximum likelihood

Description

The lagsarlm function provides Maximum likelihood estimation of spatial simultaneous autoregressive lag and spatial Durbin (mixed) models of the form:

y=ρWy+Xβ+εy = \rho W y + X \beta + \varepsilon

where ρ\rho is found by optimize() first, and β\beta and other parameters by generalized least squares subsequently (one-dimensional search using optim performs badly on some platforms). In the spatial Durbin (mixed) model, the spatially lagged independent variables are added to X. Note that interpretation of the fitted coefficients should use impact measures, because of the feedback loops induced by the data generation process for this model. With one of the sparse matrix methods, larger numbers of observations can be handled, but the interval= argument may need be set when the weights are not row-standardised.

Maximum likelihood estimation of spatial simultaneous autoregressive error models of the form:

y=Xβ+u,u=λWu+εy = X \beta + u, u = \lambda W u + \varepsilon

where λ\lambda is found by optimize() first, and β\beta and other parameters by generalized least squares subsequently. With one of the sparse matrix methods, larger numbers of observations can be handled, but the interval= argument may need be set when the weights are not row-standardised. When etype is “emixed”, a so-called spatial Durbin error model is fitted.

Maximum likelihood estimation of spatial simultaneous autoregressive “SAC/SARAR” models of the form:

y=ρW1y+Xβ+u,u=λW2u+εy = \rho W1 y + X \beta + u, u = \lambda W2 u + \varepsilon

where ρ\rho and λ\lambda are found by nlminb or optim() first, and β\beta and other parameters by generalized least squares subsequently.

Usage

lagsarlm(formula, data = list(), listw, na.action, Durbin, type,
 method="eigen", quiet=NULL, zero.policy=NULL, interval=NULL,
 tol.solve=.Machine$double.eps, trs=NULL, control=list())
errorsarlm(formula, data=list(), listw, na.action, weights=NULL,
 Durbin, etype, method="eigen", quiet=NULL, zero.policy=NULL,
 interval = NULL, tol.solve=.Machine$double.eps, trs=NULL, control=list())
sacsarlm(formula, data = list(), listw, listw2 = NULL, na.action, Durbin, type,
 method="eigen", quiet=NULL, zero.policy=NULL, tol.solve=.Machine$double.eps,
 llprof=NULL, interval1=NULL, interval2=NULL, trs1=NULL, trs2=NULL,
 control = list())
## S3 method for class 'Sarlm'
summary(object, correlation = FALSE, Nagelkerke = FALSE,
 Hausman=FALSE, adj.se=FALSE, ...)
## S3 method for class 'Sarlm'
print(x, ...)
## S3 method for class 'summary.Sarlm'
print(x, digits = max(5, .Options$digits - 3),
 signif.stars = FALSE, ...)
## S3 method for class 'Sarlm'
residuals(object, ...)
## S3 method for class 'Sarlm'
deviance(object, ...)
## S3 method for class 'Sarlm'
coef(object, ...)
## S3 method for class 'Sarlm'
vcov(object, ...)
## S3 method for class 'Sarlm'
fitted(object, ...)

Arguments

formula

a symbolic description of the model to be fit. The details of model specification are given for lm()

data

an optional data frame containing the variables in the model. By default the variables are taken from the environment which the function is called.

listw, listw2

a listw object created for example by nb2listw; if nb2listw not given, set to the same spatial weights as the listw argument

na.action

a function (default options("na.action")), can also be na.omit or na.exclude with consequences for residuals and fitted values - in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to nb2listw may be subsetted.

weights

an optional vector of weights to be used in the fitting process. Non-NULL weights can be used to indicate that different observations have different variances (with the values in weights being inversely proportional to the variances); or equivalently, when the elements of weights are positive integers w_i, that each response y_i is the mean of w_i unit-weight observations (including the case that there are w_i observations equal to y_i and the data have been summarized) - lm

Durbin

default FALSE (spatial lag model); if TRUE, full spatial Durbin model; if a formula object, the subset of explanatory variables to lag

type

(use the ‘Durbin=’ argument - retained for backwards compatibility only) default "lag", may be set to "mixed"; when "mixed", the lagged intercept is dropped for spatial weights style "W", that is row-standardised weights, but otherwise included; “Durbin” may be used instead of “mixed”

etype

(use the ‘Durbin=’ argument - retained for backwards compatibility only) default "error", may be set to "emixed" to include the spatially lagged independent variables added to X; when "emixed", the lagged intercept is dropped for spatial weights style "W", that is row-standardised weights, but otherwise included

method

"eigen" (default) - the Jacobian is computed as the product of (1 - rho*eigenvalue) using eigenw, and "spam" or "Matrix_J" for strictly symmetric weights lists of styles "B" and "C", or made symmetric by similarity (Ord, 1975, Appendix C) if possible for styles "W" and "S", using code from the spam or Matrix packages to calculate the determinant; “Matrix” and “spam_update” provide updating Cholesky decomposition methods; "LU" provides an alternative sparse matrix decomposition approach. In addition, there are "Chebyshev" and Monte Carlo "MC" approximate log-determinant methods; the Smirnov/Anselin (2009) trace approximation is available as "moments". Three methods: "SE_classic", "SE_whichMin", and "SE_interp" are provided experimentally, the first to attempt to emulate the behaviour of Spatial Econometrics toolbox ML fitting functions. All use grids of log determinant values, and the latter two attempt to ameliorate some features of "SE_classic".

quiet

default NULL, use !verbose global option value; if FALSE, reports function values during optimization.

zero.policy

default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE (default) assign NA - causing lagsarlm() to terminate with an error

interval

default is NULL, search interval for autoregressive parameter

tol.solve

the tolerance for detecting linear dependencies in the columns of matrices to be inverted - passed to solve() (default=1.0e-10). This may be used if necessary to extract coefficient standard errors (for instance lowering to 1e-12), but errors in solve() may constitute indications of poorly scaled variables: if the variables have scales differing much from the autoregressive coefficient, the values in this matrix may be very different in scale, and inverting such a matrix is analytically possible by definition, but numerically unstable; rescaling the RHS variables alleviates this better than setting tol.solve to a very small value

llprof

default NULL, can either be an integer, to divide the feasible ranges into a grid of points, or a two-column matrix of spatial coefficient values, at which to evaluate the likelihood function

trs1, trs2

default NULL, if given, vectors for each weights object of powered spatial weights matrix traces output by trW; when given, used in some Jacobian methods

interval1, interval2

default is NULL, search intervals for each weights object for autoregressive parameters

trs

default NULL, if given, a vector of powered spatial weights matrix traces output by trW; when given, insert the asymptotic analytical values into the numerical Hessian instead of the approximated values; may be used to get around some problems raised when the numerical Hessian is poorly conditioned, generating NaNs in subsequent operations; the use of trs is recommended

control

list of extra control arguments - see section below

object

Sarlm object from lagsarlm, errorsarlm or sacsarlm

correlation

logical; if 'TRUE', the correlation matrix of the estimated parameters including sigma is returned and printed (default=FALSE)

Nagelkerke

if TRUE, the Nagelkerke pseudo R-squared is reported

Hausman

if TRUE, the results of the Hausman test for error models are reported

adj.se

if TRUE, adjust the coefficient standard errors for the number of fitted coefficients

x

Sarlm object from lagsarlm, errorsarlm or sacsarlm in print.Sarlm, summary object from summary.Sarlm for print.summary.Sarlm

digits

the number of significant digits to use when printing

signif.stars

logical. If TRUE, "significance stars" are printed for each coefficient.

...

further arguments passed to or from other methods

Details

The asymptotic standard error of ρ\rho is only computed when method=“eigen”, because the full matrix operations involved would be costly for large n typically associated with the choice of method="spam" or "Matrix". The same applies to the coefficient covariance matrix. Taken as the asymptotic matrix from the literature, it is typically badly scaled, and with the elements involving ρ\rho (lag model) or λ\lambda (error model) being very small, while other parts of the matrix can be very large (often many orders of magnitude in difference). It often happens that the tol.solve argument needs to be set to a smaller value than the default, or the RHS variables can be centred or reduced in range.

Versions of the package from 0.4-38 include numerical Hessian values where asymptotic standard errors are not available. This change has been introduced to permit the simulation of distributions for impact measures. The warnings made above with regard to variable scaling also apply in this case.

Note that the fitted() function for the output object assumes that the response variable may be reconstructed as the sum of the trend, the signal, and the noise (residuals). Since the values of the response variable are known, their spatial lags are used to calculate signal components (Cressie 1993, p. 564). This differs from other software, including GeoDa, which does not use knowledge of the response variable in making predictions for the fitting data. Refer to the help page of predict.Sarlm for discussions and references.

Because numerical optimisation is used to find the values of lambda and rho in sacsarlm, care needs to be shown. It has been found that the surface of the 2D likelihood function often forms a “banana trench” from (low rho, high lambda) through (high rho, high lambda) to (high rho, low lambda) values. In addition, sometimes the banana has optima towards both ends, one local, the other global, and conseqently the choice of the starting point for the final optimization becomes crucial. The default approach is not to use just (0, 0) as a starting point, nor the (rho, lambda) values from gstsls, which lie in a central part of the “trench”, but either four values at (low rho, high lambda), (0, 0), (high rho, high lambda), and (high rho, low lambda), and to use the best of these start points for the final optimization. Optionally, nine points can be used spanning the whole (lower, upper) space.

Control arguments

tol.opt:

the desired accuracy of the optimization - passed to optimize() (default=square root of double precision machine tolerance, a larger root may be used needed, see help(boston) for an example)

returnHcov:

(error model) default TRUE, return the Vo matrix for a spatial Hausman test

pWOrder:

(error model) default 250, if returnHcov=TRUE and the method is not “eigen”, pass this order to powerWeights as the power series maximum limit

fdHess:

default NULL, then set to (method != "eigen") internally; use fdHess to compute an approximate Hessian using finite differences when using sparse matrix methods; used to make a coefficient covariance matrix when the number of observations is large; may be turned off to save resources if need be

optimHess:

default FALSE, use fdHess from nlme, if TRUE, use optim to calculate Hessian at optimum

optimHessMethod:

default “optimHess”, may be “nlm” or one of the optim methods

compiled_sse:

default FALSE; logical value used in the log likelihood function to choose compiled code for computing SSE

Imult:

default 2; used for preparing the Cholesky decompositions for updating in the Jacobian function

super:

if NULL (default), set to FALSE to use a simplicial decomposition for the sparse Cholesky decomposition and method “Matrix_J”, set to as.logical(NA) for method “Matrix”, if TRUE, use a supernodal decomposition

cheb_q:

default 5; highest power of the approximating polynomial for the Chebyshev approximation

MC_p:

default 16; number of random variates

MC_m:

default 30; number of products of random variates matrix and spatial weights matrix

spamPivot:

default “MMD”, alternative “RCM”

in_coef

default 0.1, coefficient value for initial Cholesky decomposition in “spam_update”

type

default “MC”, used with method “moments”; alternatives “mult” and “moments”, for use if trs is missing, trW

correct

default TRUE, used with method “moments” to compute the Smirnov/Anselin correction term

trunc

default TRUE, used with method “moments” to truncate the Smirnov/Anselin correction term

SE_method

default “LU”, may be “MC”

nrho

default 200, as in SE toolbox; the size of the first stage lndet grid; it may be reduced to for example 40

interpn

default 2000, as in SE toolbox; the size of the second stage lndet grid

small_asy

default TRUE; if the method is not “eigen”, use asymmetric covariances rather than numerical Hessian ones if n <= small

small

default 1500; threshold number of observations for asymmetric covariances when the method is not “eigen”

SElndet

default NULL, may be used to pass a pre-computed SE toolbox style matrix of coefficients and their lndet values to the "SE_classic" and "SE_whichMin" methods

LU_order

default FALSE; used in “LU_prepermutate”, note warnings given for lu method

pre_eig

default NULL; may be used to pass a pre-computed vector of eigenvalues

return_impacts

default TRUE; may be set FALSE to avoid problems calculating impacts with aliased variables

OrdVsign

default 1; used to set the sign of the final component to negative if -1 (alpha times ((sigma squared) squared) in Ord (1975) equation B.1).

opt_method:

default “nlminb”, may be set to “L-BFGS-B” to use box-constrained optimisation in optim

opt_control:

default list(), a control list to pass to nlminb or optim

pars:

default NULL, for which five trial starting values spanning the lower/upper range are tried and the best selected, starting values of ρ\rho and λ\lambda

npars

default integer 4L, four trial points; if not default value, nine trial points

pre_eig1, pre_eig2

default NULL; may be used to pass pre-computed vectors of eigenvalues

Author(s)

Roger Bivand [email protected], with thanks to Andrew Bernat for contributions to the asymptotic standard error code.

References

Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion; Ord, J. K. 1975 Estimation methods for models of spatial interaction, Journal of the American Statistical Association, 70, 120-126; Anselin, L. 1988 Spatial econometrics: methods and models. (Dordrecht: Kluwer); Anselin, L. 1995 SpaceStat, a software program for the analysis of spatial data, version 1.80. Regional Research Institute, West Virginia University, Morgantown, WV; Anselin L, Bera AK (1998) Spatial dependence in linear regression models with an introduction to spatial econometrics. In: Ullah A, Giles DEA (eds) Handbook of applied economic statistics. Marcel Dekker, New York, pp. 237-289; Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78: 691-692; Cressie, N. A. C. 1993 Statistics for spatial data, Wiley, New York; LeSage J and RK Pace (2009) Introduction to Spatial Econometrics. CRC Press, Boca Raton.

Roger Bivand, Gianfranco Piras (2015). Comparing Implementations of Estimation Methods for Spatial Econometrics. Journal of Statistical Software, 63(18), 1-36. doi:10.18637/jss.v063.i18.

Bivand, R. S., Hauke, J., and Kossowski, T. (2013). Computing the Jacobian in Gaussian spatial autoregressive models: An illustrated comparison of available methods. Geographical Analysis, 45(2), 150-179.

See Also

lm, impacts

Examples

data(oldcol, package="spdep")
listw <- spdep::nb2listw(COL.nb, style="W")
ev <- eigenw(listw)
W <- as(listw, "CsparseMatrix")
trMatc <- trW(W, type="mult")
COL.lag.eig <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD, listw=listw,
 method="eigen", quiet=FALSE, control=list(pre_eig=ev, OrdVsign=1))
(x <- summary(COL.lag.eig, correlation=TRUE))
coef(x)
## Not run: 
COL.lag.eig$fdHess
COL.lag.eig$resvar
# using the apparent sign in Ord (1975, equation B.1) 
COL.lag.eigb <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD, listw=listw,
 method="eigen", control=list(pre_eig=ev, OrdVsign=-1))
summary(COL.lag.eigb)
COL.lag.eigb$fdHess
COL.lag.eigb$resvar
# force numerical Hessian
COL.lag.eig1 <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw=listw, method="Matrix", control=list(small=25))
summary(COL.lag.eig1)
COL.lag.eig1$fdHess
# force LeSage & Pace (2008, p. 57) approximation 
COL.lag.eig1a <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw=listw, method="Matrix", control=list(small=25), trs=trMatc)
summary(COL.lag.eig1a)
COL.lag.eig1a$fdHess
COL.lag.eig$resvar[2,2]
# using the apparent sign in Ord (1975, equation B.1) 
COL.lag.eigb$resvar[2,2]
# force numerical Hessian
COL.lag.eig1$fdHess[1,1]
# force LeSage & Pace (2008, p. 57) approximation 
COL.lag.eig1a$fdHess[2,2]

## End(Not run)
system.time(COL.lag.M <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, method="Matrix", quiet=FALSE))
summary(COL.lag.M)
impacts(COL.lag.M, listw=listw)
## Not run: 
system.time(COL.lag.sp <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw=listw, method="spam", quiet=FALSE))
summary(COL.lag.sp)
COL.lag.B <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 spdep::nb2listw(COL.nb, style="B"), control=list(pre_eig=ev))
summary(COL.lag.B)
COL.mixed.B <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 spdep::nb2listw(COL.nb, style="B"), type="mixed", tol.solve=1e-9,
 control=list(pre_eig=ev))
summary(COL.mixed.B)
COL.mixed.W <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, type="mixed", control=list(pre_eig=ev))
summary(COL.mixed.W)
COL.mixed.D00 <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, Durbin=TRUE, control=list(pre_eig=ev))
summary(COL.mixed.D00)
COL.mixed.D01 <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, Durbin=FALSE, control=list(pre_eig=ev))
summary(COL.mixed.D01)
COL.mixed.D1 <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, Durbin= ~ INC + HOVAL, control=list(pre_eig=ev))
summary(COL.mixed.D1)
f <- CRIME ~ INC + HOVAL
COL.mixed.D2 <- lagsarlm(f, data=COL.OLD, listw,
 Durbin=as.formula(delete.response(terms(f))),
 control=list(pre_eig=ev))
summary(COL.mixed.D2)
COL.mixed.D1a <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, Durbin= ~ INC, control=list(pre_eig=ev))
summary(COL.mixed.D1a)
try(COL.mixed.D1 <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, Durbin= ~ inc + HOVAL, control=list(pre_eig=ev)))
try(COL.mixed.D1 <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, Durbin= ~ DISCBD + HOVAL, control=list(pre_eig=ev)))
NA.COL.OLD <- COL.OLD
NA.COL.OLD$CRIME[20:25] <- NA
COL.lag.NA <- lagsarlm(CRIME ~ INC + HOVAL, data=NA.COL.OLD,
 listw, na.action=na.exclude)
COL.lag.NA$na.action
COL.lag.NA
resid(COL.lag.NA)
COL.lag.NA1 <- lagsarlm(CRIME ~ INC + HOVAL, data=NA.COL.OLD,
 listw, Durbin=~INC) # https://github.com/r-spatial/spatialreg/issues/10
COL.lag.NA1$na.action
COL.lag.NA2 <- lagsarlm(CRIME ~ INC + HOVAL, data=NA.COL.OLD,
 listw, Durbin=~INC, na.action=na.exclude)
COL.lag.NA2$na.action
# https://github.com/r-spatial/spatialreg/issues/11
COL.lag.NA3 <- lagsarlm(CRIME ~ INC + HOVAL, data=NA.COL.OLD,
 listw, control=list(pre_eig=ev))
COL.lag.NA3$na.action

## End(Not run)

## Not run: 
data(boston, package="spData")
gp2mM <- lagsarlm(log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + 
I(RM^2) +  AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT), 
data=boston.c, spdep::nb2listw(boston.soi), type="mixed", method="Matrix")
summary(gp2mM)
W <- as(spdep::nb2listw(boston.soi), "CsparseMatrix")
trMatb <- trW(W, type="mult")
gp2mMi <- lagsarlm(log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + 
I(RM^2) +  AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT), 
data=boston.c, spdep::nb2listw(boston.soi), type="mixed", method="Matrix", 
trs=trMatb)
summary(gp2mMi)

## End(Not run)
COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, quiet=FALSE, control=list(pre_eig=ev))
summary(COL.errW.eig)
COL.errW.eig_ev <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, control=list(pre_eig=ev))
all.equal(coefficients(COL.errW.eig), coefficients(COL.errW.eig_ev))
COL.errB.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 spdep::nb2listw(COL.nb, style="B"))
summary(COL.errB.eig)
COL.errW.M <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, method="Matrix", quiet=FALSE, trs=trMatc)
summary(COL.errW.M)
COL.SDEM.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, etype="emixed", control=list(pre_eig=ev))
summary(COL.SDEM.eig)
## Not run: 
COL.SDEM.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, Durbin=TRUE, control=list(pre_eig=ev))
summary(COL.SDEM.eig)
COL.SDEM.eig <- errorsarlm(CRIME ~ DISCBD + INC + HOVAL, data=COL.OLD,
 listw, Durbin=~INC, control=list(pre_eig=ev))
summary(COL.SDEM.eig)
summary(impacts(COL.SDEM.eig))
NA.COL.OLD <- COL.OLD
NA.COL.OLD$CRIME[20:25] <- NA
COL.err.NA <- errorsarlm(CRIME ~ INC + HOVAL, data=NA.COL.OLD,
 listw, na.action=na.exclude)
COL.err.NA$na.action
COL.err.NA
resid(COL.err.NA)
print(system.time(ev <- eigenw(similar.listw(listw))))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, method="eigen", control=list(pre_eig=ev))))
ocoef <- coefficients(COL.errW.eig)
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, method="eigen", control=list(pre_eig=ev, LAPACK=FALSE))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, method="eigen", control=list(pre_eig=ev, compiled_sse=TRUE))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, method="Matrix_J", control=list(super=TRUE))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, method="Matrix_J", control=list(super=FALSE))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, method="Matrix_J", control=list(super=as.logical(NA)))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, method="Matrix", control=list(super=TRUE))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, method="Matrix", control=list(super=FALSE))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, method="Matrix", control=list(super=as.logical(NA)))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, method="spam", control=list(spamPivot="MMD"))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, method="spam", control=list(spamPivot="RCM"))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, method="spam_update", control=list(spamPivot="MMD"))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, method="spam_update", control=list(spamPivot="RCM"))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))

## End(Not run)
COL.sacW.eig <- sacsarlm(CRIME ~ INC + HOVAL, data=COL.OLD, listw,
 control=list(pre_eig1=ev, pre_eig2=ev))
summary(COL.sacW.eig)
set.seed(1)
summary(impacts(COL.sacW.eig, tr=trMatc, R=2000), zstats=TRUE, short=TRUE)
COL.msacW.eig <- sacsarlm(CRIME ~ INC + HOVAL, data=COL.OLD, listw,
 type="sacmixed", control=list(pre_eig1=ev, pre_eig2=ev))
summary(COL.msacW.eig)
set.seed(1)
summary(impacts(COL.msacW.eig, tr=trMatc, R=2000), zstats=TRUE, short=TRUE)
COL.msacW1.eig <- sacsarlm(CRIME ~ INC + HOVAL, data=COL.OLD, listw,
 Durbin=TRUE, control=list(pre_eig1=ev, pre_eig2=ev))
summary(COL.msacW1.eig)
set.seed(1)
summary(impacts(COL.msacW1.eig, tr=trMatc, R=2000), zstats=TRUE, short=TRUE)
COL.msacW2.eig <- sacsarlm(CRIME ~ DISCBD + INC + HOVAL, data=COL.OLD, 
 listw, Durbin= ~ INC, control=list(pre_eig1=ev, pre_eig2=ev))
summary(COL.msacW2.eig)
summary(impacts(COL.msacW2.eig, tr=trMatc, R=2000), zstats=TRUE, short=TRUE)
## Not run: 
COL.mix.eig <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, type="mixed", method="eigen")
summary(COL.mix.eig, correlation=TRUE, Nagelkerke=TRUE)
COL.mix.M <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw, type="mixed", method="Matrix")
summary(COL.mix.M, correlation=TRUE, Nagelkerke=TRUE)
COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
  spdep::nb2listw(COL.nb, style="W"), method="eigen")
summary(COL.errW.eig, correlation=TRUE, Nagelkerke=TRUE, Hausman=TRUE)

## End(Not run)

Prediction for spatial simultaneous autoregressive linear model objects

Description

predict.Sarlm() calculates predictions as far as is at present possible for for spatial simultaneous autoregressive linear model objects, using Haining's terminology for decomposition into trend, signal, and noise, or other types of predictors — see references.

Usage

## S3 method for class 'Sarlm'
predict(object, newdata = NULL, listw = NULL, pred.type = "TS", all.data = FALSE,
 zero.policy = NULL, legacy = TRUE, legacy.mixed = FALSE, power = NULL, order = 250,
 tol = .Machine$double.eps^(3/5), spChk = NULL, ...)
#\method{predict}{SLX}(object, newdata, listw, zero.policy=NULL, ...)
## S3 method for class 'Sarlm.pred'
print(x, ...)
## S3 method for class 'Sarlm.pred'
as.data.frame(x, ...)

Arguments

object

Sarlm object returned by lagsarlm, errorsarlm or sacsarlm, the method for SLX objects takes the output of lmSLX

newdata

data frame in which to predict — if NULL, predictions are for the data on which the model was fitted. Should have row names corresponding to region.id. If row names are exactly the same than the ones used for training, it uses in-sample predictors for forecast. See ‘Details’

listw

a listw object created for example by nb2listw. In the out-of-sample prediction case (ie. if newdata is not NULL), if legacy.mixed=FALSE or if pred.type!="TS", it should include both in-sample and out-of-sample spatial units. In this case, if regions of the listw are not in the correct order, they are reordered. See ‘Details’

pred.type

predictor type — default “TS”, use decomposition into trend, signal, and noise ; other types available depending on newdata. If newdata=NULL (in-sample prediction), “TS”, “trend”, “TC” and “BP” are available. If newdata is not NULL and its row names are the same than the data used to fit the model (forecast case), “TS”, “trend” and “TC” are available. In other cases (out-of-sample prediction), “TS”, “trend”, “KP1”, “KP2”, “KP3”, “KP4”, “KP5”, “TC”, “BP”, “BPW”, “BPN”, “TS1”, “TC1”, “BP1”, “BPW1” and “BPN1” are available. See ‘Details’ and references

all.data

(only applies to pred.type="TC" and newdata is not NULL) default FALSE: return predictions only for newdata units, if TRUE return predictions for all data units. See ‘Details’

zero.policy

default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE (default) assign NA - causing the function to terminate with an error

legacy

(only applies to lag and Durbin (mixed) models for pred.type="TS") default TRUE: use ad-hoc predictor, if FALSE use DGP-based predictor

legacy.mixed

(only applies to mixed models if newdata is not NULL) default FALSE: compute lagged variables from both in-sample and out-of-sample units with [WX]O[W X]_O and [WX]S[W X]_S where X=cbind(Xs, Xo), if TRUE compute lagged variables independantly between in-sample and out-of-sample units with WOOXOW_{OO} X_O and WSSXSW_{SS} X_S

power

(only applies to lag and Durbin (mixed) models for “TS”, “KP1”, “KP2”, “KP3”, “TC”, “TC1”, “BP”, “BP1”, “BPN”, “BPN1”, “BPW” and “BPW1” types) use powerWeights, if default NULL, set FALSE if object$method is “eigen”, otherwise TRUE

order

power series maximum limit if power is TRUE

tol

tolerance for convergence of power series if power is TRUE

spChk

should the row names of data frames be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use get.spChkOption()

x

the object to be printed

...

further arguments passed through

Details

The function supports three types of prediction. In-sample prediction is the computation of predictors on the data used to fit the model (newdata=NULL). Prevision, also called forecast, is the computation of some predictors (“trend”, in-sample “TC” and out-of-sample “TS”) on the same spatial units than the ones used to fit the model, but with different observations of the variables in the model (row names of newdata should have the same row names than the data frame used to fit the model). And out-of-sample prediction is the computation of predictors on other spatial units than the ones used to fit the model (newdata has different row names). For extensive definitions, see Goulard et al. (2017).

pred.type of predictors are available according to the model of object an to the type of prediction. In the two following tables, “yes” means that the predictor can be used with the model, “no” means that predict.Sarlm() will stop with an error, and “yes*” means that the predictor is not designed for the specified model, but it can be used with predict.Sarlm(). In the last case, be careful with the computation of a inappropriate predictor.

In-sample predictors by models

pred.type sem (mixed) lag (mixed) sac (mixed)
“trend” yes yes yes
“TS” yes yes no
“TC” no yes yes*
“BP” no yes yes*

Note that only “trend” and “TC” are available for prevision.

Out-of-sample predictors by models

pred.type sem (mixed) lag (mixed) sac (mixed)
“trend” yes yes yes
“TS” yes yes no
“TS1” or “KP4” no yes yes
“TC” no yes yes*
“TC1” or “KP1” yes yes yes
“BP” no yes yes*
“BP1” no yes yes*
“BPW” no yes yes*
“BPW1” no yes yes*
“BN” no yes yes*
“BPN1” no yes yes*
“KP2” yes yes yes
“KP3” yes yes yes
“KP5” yes no yes*

Values for pred.type= include “TS1”, “TC”, “TC1”, “BP”, “BP1”, “BPW”, “BPW1”, “BPN”, “BPN1”, following the notation in Goulard et al. (2017), and for pred.type= “KP1”, “KP2”, “KP3”, “KP4”, “KP5”, following the notation in Kelejian et al. (2007). pred.type="TS" is described bellow and in Bivand (2002).

In the following, the trend is the non-spatial smooth, the signal is the spatial smooth, and the noise is the residual. The fit returned by pred.type="TS" is the sum of the trend and the signal.

When pred.type="TS", the function approaches prediction first by dividing invocations between those with or without newdata. When no newdata is present, the response variable may be reconstructed as the sum of the trend, the signal, and the noise (residuals). Since the values of the response variable are known, their spatial lags are used to calculate signal components (Cressie 1993, p. 564). For the error model, trend = XβX \beta, and signal = λWyλWXβ\lambda W y - \lambda W X \beta. For the lag and mixed models, trend = XβX \beta, and signal = ρWy\rho W y.

This approach differs from the design choices made in other software, for example GeoDa, which does not use observations of the response variable, and corresponds to the newdata situation described below.

When however newdata is used for prediction, no observations of the response variable being predicted are available. Consequently, while the trend components are the same, the signal cannot take full account of the spatial smooth. In the error model and Durbin error model, the signal is set to zero, since the spatial smooth is expressed in terms of the error: (IλW)1ε(I - \lambda W)^{-1} \varepsilon.

In the lag model, the signal can be expressed in the following way (for legacy=TRUE):

(IρW)y=Xβ+ε(I - \rho W) y = X \beta + \varepsilon

y=(IρW)1Xβ+(IρW)1εy = (I - \rho W)^{-1} X \beta + (I - \rho W)^{-1} \varepsilon

giving a feasible signal component of:

ρWy=ρW(IρW)1Xβ\rho W y = \rho W (I - \rho W)^{-1} X \beta

For legacy=FALSE, the trend is computed first as:

XβX \beta

next the prediction using the DGP:

(IρW)1Xβ(I - \rho W)^{-1} X \beta

and the signal is found as the difference between prediction and trend. The numerical results for the legacy and DGP methods are identical.

setting the error term to zero. This also means that predictions of the signal component for lag and mixed models require the inversion of an n-by-n matrix.

Because the outcomes of the spatial smooth on the error term are unobservable, this means that the signal values for newdata are incomplete. In the mixed model, the spatially lagged RHS variables influence both the trend and the signal, so that the root mean square prediction error in the examples below for this case with newdata is smallest, although the model was not the best fit.

If newdata has more than one row, leave-one-out predictors (pred.type= include “TS1”, “TC1”, “BP1”, “BPW1”, “BPN1”, “KP1”, “KP2”, “KP3”, “KP4”, “KP5”) are computed separatly on each out-of-sample unit.

listw should be provided except if newdata=NULL and pred.type= include “TS”, “trend”, or if newdata is not NULL, pred.type="trend" and object is not a mixed model.

all.data is useful when some out-of-sample predictors return different predictions for in-sample units, than the same predictor type computed only on in-sample data.

Value

predict.Sarlm() returns a vector of predictions with three attribute vectors of trend, signal (only for pred.type="TS") and region.id values and two other attributes of pred.type and call with class Sarlm.pred.

print.Sarlm.pred() is a print function for this class, printing and returning a data frame with columns: "fit", "trend" and "signal" (when available) and with region.id as row names.

Author(s)

Roger Bivand [email protected] and Martin Gubri

References

Haining, R. 1990 Spatial data analysis in the social and environmental sciences, Cambridge: Cambridge University Press, p. 258; Cressie, N. A. C. 1993 Statistics for spatial data, Wiley, New York; Michel Goulard, Thibault Laurent & Christine Thomas-Agnan, 2017 About predictions in spatial autoregressive models: optimal and almost optimal strategies, Spatial Economic Analysis Volume 12, Issue 2–3, 304–325 doi:10.1080/17421772.2017.1300679, ; Kelejian, H. H. and Prucha, I. R. 2007 The relative efficiencies of various predictors in spatial econometric models containing spatial lags, Regional Science and Urban Economics, Volume 37, Issue 3, 363–374; Bivand, R. 2002 Spatial econometrics functions in R: Classes and methods, Journal of Geographical Systems, Volume 4, No. 4, 405–421

See Also

errorsarlm, lagsarlm, sacsarlm

Examples

data(oldcol, package="spdep")
lw <- spdep::nb2listw(COL.nb)
COL.lag.eig <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD, lw)

COL.mix.eig <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD, lw,
  type="mixed")
print(p1 <- predict(COL.mix.eig))
print(p2 <- predict(COL.mix.eig, newdata=COL.OLD, listw=lw, pred.type = "TS",
 legacy.mixed = TRUE))
AIC(COL.mix.eig)
sqrt(deviance(COL.mix.eig)/length(COL.nb))
sqrt(sum((COL.OLD$CRIME - as.vector(p1))^2)/length(COL.nb))
sqrt(sum((COL.OLD$CRIME - as.vector(p2))^2)/length(COL.nb))

COL.err.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD, lw)
AIC(COL.err.eig)
sqrt(deviance(COL.err.eig)/length(COL.nb))
sqrt(sum((COL.OLD$CRIME - as.vector(predict(COL.err.eig)))^2)/length(COL.nb))
sqrt(sum((COL.OLD$CRIME - as.vector(predict(COL.err.eig, newdata=COL.OLD,
  listw=lw, pred.type = "TS")))^2)/length(COL.nb))

COL.SDerr.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD, lw,
 etype="emixed")
AIC(COL.SDerr.eig)
sqrt(deviance(COL.SDerr.eig)/length(COL.nb))
sqrt(sum((COL.OLD$CRIME - as.vector(predict(COL.SDerr.eig)))^2)/length(COL.nb))
sqrt(sum((COL.OLD$CRIME - as.vector(predict(COL.SDerr.eig, newdata=COL.OLD,
  listw=lw, pred.type = "TS")))^2)/length(COL.nb))

AIC(COL.lag.eig)
sqrt(deviance(COL.lag.eig)/length(COL.nb))
sqrt(sum((COL.OLD$CRIME - as.vector(predict(COL.lag.eig)))^2)/length(COL.nb))
sqrt(sum((COL.OLD$CRIME - as.vector(predict(COL.lag.eig, newdata=COL.OLD,
  listw=lw, pred.type = "TS")))^2)/length(COL.nb))

p3 <- predict(COL.mix.eig, newdata=COL.OLD, listw=lw, pred.type = "TS",
 legacy=FALSE, legacy.mixed = TRUE)
all.equal(p2, p3, check.attributes=FALSE)
p4 <- predict(COL.mix.eig, newdata=COL.OLD, listw=lw, pred.type = "TS",
 legacy=FALSE, power=TRUE, legacy.mixed = TRUE)
all.equal(p2, p4, check.attributes=FALSE)
p5 <- predict(COL.mix.eig, newdata=COL.OLD, listw=lw, pred.type = "TS",
 legacy=TRUE, power=TRUE, legacy.mixed = TRUE)
all.equal(p2, p5, check.attributes=FALSE)

Options for parallel support

Description

Provides support for the use of parallel computation in the parallel package.

Usage

set.mcOption(value)
get.mcOption()
set.coresOption(value)
get.coresOption()
set.ClusterOption(cl)
get.ClusterOption()

Arguments

value

valid replacement value

cl

a cluster object created by makeCluster in parallel

Details

Options in the spatialreg package are held in an environment local to the package namespace and not exported. Option values are set and retrieved with pairs of access functions, get and set. The mc option is set by default to FALSE on Windows systems, as they cannot fork the R session; by default it is TRUE on other systems, but may be set FALSE. If mc is FALSE, the Cluster option is used: if mc is FALSE and the Cluster option is NULL no parallel computing is done, or the Cluster option is passed a “cluster” object created by the parallel or snow package for access without being passed as an argument. The cores option is set to NULL by default, and can be used to store the number of cores to use as an integer. If cores is NULL, facilities from the parallel package will not be used.

Value

The option access functions return their current settings, the assignment functions usually return the previous value of the option.

Note

An extended example is shown in the documentation of mom_calc, including treatment of seeding of RNG for multicore/cluster.

Author(s)

Roger Bivand [email protected]

Examples

ls(envir=spatialreg:::.spatialregOptions)
library(parallel)
nc <- max(2L, detectCores(logical=FALSE), na.rm = TRUE)-1L
nc
# set nc to 1L here
if (nc > 1L) nc <- 1L
#nc <- ifelse(nc > 2L, 2L, nc)
coresOpt <- get.coresOption()
coresOpt
if (!is.na(nc)) {
 invisible(set.coresOption(nc))
 print(exists("mom_calc"))
 if(.Platform$OS.type == "windows") {
# forking not permitted on Windows - start cluster
# removed for Github actions 210502
## Not run: 
  print(get.mcOption())
  cl <- makeCluster(get.coresOption())
  print(clusterEvalQ(cl, exists("mom_calc")))
  set.ClusterOption(cl)
  clusterEvalQ(get.ClusterOption(), library(spatialreg))
  print(clusterEvalQ(cl, exists("mom_calc")))
  clusterEvalQ(get.ClusterOption(), detach(package:spatialreg))
  set.ClusterOption(NULL)
  print(clusterEvalQ(cl, exists("mom_calc")))
  stopCluster(cl)

## End(Not run)
 } else {
  mcOpt <- get.mcOption()
  print(mcOpt)
  print(mclapply(1:get.coresOption(), function(i) exists("mom_calc"),
   mc.cores=get.coresOption()))
  invisible(set.mcOption(FALSE))
  cl <- makeCluster(nc)
  print(clusterEvalQ(cl, exists("mom_calc")))
  set.ClusterOption(cl)
  clusterEvalQ(get.ClusterOption(), library(spatialreg))
  print(clusterEvalQ(cl, exists("mom_calc")))
  clusterEvalQ(get.ClusterOption(), detach(package:spatialreg))
  set.ClusterOption(NULL)
  print(clusterEvalQ(cl, exists("mom_calc")))
  stopCluster(cl)
  invisible(set.mcOption(mcOpt))
 }
 invisible(set.coresOption(coresOpt))
}

Control checking of spatial object IDs

Description

Provides support for checking the mutual integrity of spatial neighbour weights and spatial data; similar mechanisms are used for passing global verbose and zero.policy options, and for providing access to a running cluster for embarrassingly parallel tasks.

Usage

set.VerboseOption(check)
get.VerboseOption()
set.ZeroPolicyOption(check)
get.ZeroPolicyOption()
#set.listw_is_CsparseMatrix_Option(check)
#get.listw_is_CsparseMatrix_Option()

Arguments

check

a logical value, TRUE or FALSE

Details

Analysis functions will have an spChk argument by default set to NULL, and will call get.spChkOption() to get the global spatial option for whether to check or not — this is initialised to FALSE, and consequently should not break anything. It can be changed to TRUE using set.spChkOption(TRUE), or the spChk argument can be assigned in analysis functions. spNamedVec() is provided to ensure that rownames are passed on to single columns taken from two-dimensional arrays and data frames.

Value

set.spChkOption() returns the old logical value, get.spChkOption() returns the current logical value, and chkIDs() returns a logical value for the test lack of difference. spNamedVec() returns the selected column with the names set to the row names of the object from which it has been extracted.

Author(s)

Roger Bivand [email protected]

Examples

get.VerboseOption()
get.ZeroPolicyOption()

Create symmetric similar weights lists

Description

From Ord's 1975 paper, it is known that the Jacobian for SAR models may be found by "symmetrizing" by similarity (the eigenvalues of similar matrices are identical, so the Jacobian is too). This applies only to styles "W" and "S" with underlying symmetric binary neighbour relations or symmetric general neighbour relations (so no k-nearest neighbour relations). The function is invoked automatically within the SAR fitting functions, to call eigen on a symmetric matrix for the default eigen method, or to make it possible to use the Matrix method on weights that can be "symmetrized" in this way.

Usage

similar.listw(listw)

Arguments

listw

a listw object created for example by spdep::nb2listw

Value

a listw object

Author(s)

Roger Bivand [email protected]

References

Ord, J. K. 1975 Estimation methods for models of spatial interaction, Journal of the American Statistical Association, 70, 120-126

See Also

lagsarlm, errorsarlm

Examples

#require("spdep", quietly=TRUE)
data(oldcol, package="spdep")
COL.W <- spdep::nb2listw(COL.nb, style="W")
COL.S <- spdep::nb2listw(COL.nb, style="S")
sum(log(1 - 0.5 * eigenw(COL.W)))
sum(log(1 - 0.5 * eigenw(similar.listw(COL.W))))
W_J <- as(as_dsTMatrix_listw(similar.listw(COL.W)), "CsparseMatrix")
I <- as_dsCMatrix_I(dim(W_J)[1])
c(determinant(I - 0.5 * W_J, logarithm=TRUE)$modulus)
sum(log(1 - 0.5 * eigenw(COL.S)))
sum(log(1 - 0.5 * eigenw(similar.listw(COL.S))))
W_J <- as(as_dsTMatrix_listw(similar.listw(COL.S)), "CsparseMatrix")
c(determinant(I - 0.5 * W_J, logarithm=TRUE)$modulus)

Semi-parametric spatial filtering

Description

The function selects eigenvectors in a semi-parametric spatial filtering approach to removing spatial dependence from linear models. Selection is by brute force by finding the single eigenvector reducing the standard variate of Moran's I for regression residuals most, and continuing until no candidate eigenvector reduces the value by more than tol. It returns a summary table from the selection process and a matrix of selected eigenvectors for the specified model.

Usage

SpatialFiltering(formula, lagformula=NULL, data=list(), na.action=na.fail,
 nb=NULL, glist = NULL,
 style = "C", zero.policy = NULL, tol = 0.1, zerovalue = 1e-04,
 ExactEV = FALSE, symmetric = TRUE, alpha=NULL, alternative="two.sided",
 verbose=NULL)

Arguments

formula

a symbolic description of the model to be fit, assuming a spatial error representation; when lagformula is given, it should include only the response and the intercept term

lagformula

An extra one-sided formula to be used when a spatial lag representation is desired; the intercept is excluded within the function if present because it is part of the formula argument, but excluding it explicitly in the lagformula argument in the presence of factors generates a collinear model matrix

data

an optional data frame containing the variables in the model

nb

an object of class nb

glist

list of general weights corresponding to neighbours

style

style can take values W, B, C, U, and S

na.action

a function (default options("na.action")), can also be na.omit or na.exclude with consequences for residuals and fitted values - in these cases the spatial weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to nb2listw may be subsetted.

zero.policy

default NULL, use global option value; if FALSE stop with error for any empty neighbour sets, if TRUE permit the weights list to be formed with zero-length weights vectors

tol

tolerance value for convergence of spatial filtering

zerovalue

eigenvectors with eigenvalues of an absolute value smaller than zerovalue will be excluded in eigenvector search

ExactEV

Set ExactEV=TRUE to use exact expectations and variances rather than the expectation and variance of Moran's I from the previous iteration, default FALSE

symmetric

Should the spatial weights matrix be forced to symmetry, default TRUE

alpha

if not NULL, used instead of the tol= argument as a stopping rule to choose all eigenvectors up to and including the one with a probability value exceeding alpha.

alternative

a character string specifying the alternative hypothesis, must be one of greater, less or two.sided (default).

verbose

default NULL, use global option value; if TRUE report eigenvectors selected

Value

An SfResult object, with:

selection

a matrix summarising the selection of eigenvectors for inclusion, with columns:

Step

Step counter of the selection procedure

SelEvec

number of selected eigenvector (sorted descending)

Eval

its associated eigenvalue

MinMi

value Moran's I for residual autocorrelation

ZMinMi

standardized value of Moran's I assuming a normal approximation

pr(ZI)

probability value of the permutation-based standardized deviate for the given value of the alternative argument

R2

R^2 of the model including exogenous variables and eigenvectors

gamma

regression coefficient of selected eigenvector in fit

The first row is the value at the start of the search

dataset

a matrix of the selected eigenvectors in order of selection

Author(s)

Yongwan Chun, Michael Tiefelsdorf, Roger Bivand

References

Tiefelsdorf M, Griffith DA. (2007) Semiparametric Filtering of Spatial Autocorrelation: The Eigenvector Approach. Environment and Planning A, 39 (5) 1193 - 1221.

See Also

lm, eigen, nb2listw, listw2U

Examples

require("sf", quietly=TRUE)
columbus <- st_read(system.file("shapes/columbus.gpkg", package="spData")[1], quiet=TRUE)
#require("spdep", quietly=TRUE)
col.gal.nb <- spdep::read.gal(system.file("weights/columbus.gal", package="spData")[1])
lmbase <- lm(CRIME ~ INC + HOVAL, data=columbus)
sarcol <- SpatialFiltering(CRIME ~ INC + HOVAL, data=columbus,
 nb=col.gal.nb, style="W", ExactEV=TRUE)
sarcol
lmsar <- lm(CRIME ~ INC + HOVAL + fitted(sarcol), data=columbus)
(x <- summary(lmsar))
coef(x)
anova(lmbase, lmsar)
spdep::lm.morantest(lmsar, spdep::nb2listw(col.gal.nb))
lagcol <- SpatialFiltering(CRIME ~ 1, ~ INC + HOVAL - 1, data=columbus,
 nb=col.gal.nb, style="W")
lagcol
lmlag <- lm(CRIME ~ INC + HOVAL + fitted(lagcol), data=columbus)
lmlag
anova(lmbase, lmlag)
spdep::lm.morantest(lmlag, spdep::nb2listw(col.gal.nb))
NA.columbus <- columbus
NA.columbus$CRIME[20:25] <- NA
COL.SF.NA <- SpatialFiltering(CRIME ~ INC + HOVAL, data=NA.columbus,
 nb=col.gal.nb, style="W", na.action=na.exclude)
COL.SF.NA$na.action
summary(lm(CRIME ~ INC + HOVAL + fitted(COL.SF.NA), data=NA.columbus,
 na.action=na.exclude))

Spatial conditional and simultaneous autoregression model estimation

Description

Function taking family and weights arguments for spatial autoregression model estimation by Maximum Likelihood, using dense matrix methods, not suited to large data sets with thousands of observations. With one of the sparse matrix methods, larger numbers of observations can be handled, but the interval= argument should be set. The implementation is GLS using the single spatial coefficient value, here termed lambda, found by line search using optimize to maximise the log likelihood.

Usage

spautolm(formula, data = list(), listw, weights,
 na.action, family = "SAR", method="eigen", verbose = NULL, trs=NULL,
 interval=NULL, zero.policy = NULL, tol.solve=.Machine$double.eps,
 llprof=NULL, control=list())
## S3 method for class 'Spautolm'
summary(object, correlation = FALSE, adj.se=FALSE,
 Nagelkerke=FALSE, ...)

Arguments

formula

a symbolic description of the model to be fit. The details of model specification are given for lm()

data

an optional data frame containing the variables in the model. By default the variables are taken from the environment which the function is called.

listw

a listw object created for example by nb2listw

weights

an optional vector of weights to be used in the fitting process

na.action

a function (default options("na.action")), can also be na.omit or na.exclude with consequences for residuals and fitted values - in these cases the weights list will be subsetted to remove NAs in the data. Note that only weights lists created without using the glist argument to nb2listw may be subsetted.

family

character string: either "SAR" or "CAR" for simultaneous or conditional autoregressions; "SMA" for spatial moving average added thanks to Jielai Ma - "SMA" is only implemented for method="eigen" because it necessarily involves dense matrices

method

character string: default "eigen" for use of dense matrices, "Matrix_J" for sparse matrices (restricted to spatial weights symmetric or similar to symmetric) using methods in the Matrix package; “Matrix” provides updating Cholesky decomposition methods. Values of method may also include "LU", which provides an alternative sparse matrix decomposition approach, and the "Chebyshev" and Monte Carlo "MC" approximate log-determinant methods.

verbose

default NULL, use global option value; if TRUE, reports function values during optimization.

trs

default NULL, if given, a vector of powered spatial weights matrix traces output by trW; when given, used in some Jacobian methods

interval

search interval for autoregressive parameter when not using method="eigen"; default is c(-1,0.999), optimize will reset NA/NaN to a bound and gives a warning when the interval is poorly set; method="Matrix" will attempt to search for an appropriate interval, if find_interval=TRUE (fails on some platforms)

zero.policy

default NULL, use global option value; Include list of no-neighbour observations in output if TRUE — otherwise zero.policy is handled within the listw argument

tol.solve

the tolerance for detecting linear dependencies in the columns of matrices to be inverted - passed to solve() (default=double precision machine tolerance). Errors in solve() may constitute indications of poorly scaled variables: if the variables have scales differing much from the autoregressive coefficient, the values in this matrix may be very different in scale, and inverting such a matrix is analytically possible by definition, but numerically unstable; rescaling the RHS variables alleviates this better than setting tol.solve to a very small value

llprof

default NULL, can either be an integer, to divide the feasible range into llprof points, or a sequence of spatial coefficient values, at which to evaluate the likelihood function

control

list of extra control arguments - see section below

object

Spautolm object from spautolm

correlation

logical; if 'TRUE', the correlation matrix of the estimated parameters is returned and printed (default=FALSE)

adj.se

if TRUE, adjust the coefficient standard errors for the number of fitted coefficients

Nagelkerke

if TRUE, the Nagelkerke pseudo R-squared is reported

...

further arguments passed to or from other methods

Details

This implementation is based on lm.gls and errorsarlm. In particular, the function does not (yet) prevent asymmetric spatial weights being used with "CAR" family models. It appears that both numerical issues (convergence in particular) and uncertainties about the exact spatial weights matrix used make it difficult to reproduce Cressie and Chan's 1989 results, also given in Cressie 1993.

Note that the fitted() function for the output object assumes that the response variable may be reconstructed as the sum of the trend, the signal, and the noise (residuals). Since the values of the response variable are known, their spatial lags are used to calculate signal components (Cressie 1993, p. 564). This differs from other software, including GeoDa, which does not use knowledge of the response variable in making predictions for the fitting data.

Value

A list object of class Spautolm:

fit

a list, with items:

coefficients

ML coefficient estimates

SSE

ML sum of squared errors

s2

ML residual variance

imat

ML coefficient covariance matrix (before multiplying by s2)

signal_trend

non-spatial component of fitted.values

signal_stochastic

spatial component of fitted.values

fitted.values

sum of non-spatial and spatial components of fitted.values

residuals

difference between observed and fitted values

lambda

ML autoregressive coefficient

LL

log likelihood for fitted model

LL0

log likelihood for model with lambda=0

call

the call used to create this object

parameters

number of parameters estimated

aliased

if not NULL, details of aliased variables

method

Jacobian method chosen

family

family chosen

zero.policy

zero.policy used

weights

case weights used

interval

the line search interval used

timings

processing timings

na.action

(possibly) named vector of excluded or omitted observations if non-default na.action argument used

llprof

if not NULL, a list with components lambda and ll of equal length

lambda.se

Numerical Hessian-based standard error of lambda

fdHess

Numerical Hessian-based variance-covariance matrix

X

covariates used in model fitting

Y

response used in model fitting

weights

weights used in model fitting

Control arguments

tol.opt:

the desired accuracy of the optimization - passed to optimize() (default=.Machine$double.eps^(2/3))

fdHess:

default NULL, then set to (method != "eigen") internally; use fdHess to compute an approximate Hessian using finite differences when using sparse matrix methods; used to make a coefficient covariance matrix when the number of observations is large; may be turned off to save resources if need be

optimHess:

default FALSE, use fdHess from nlme, if TRUE, use optim to calculate Hessian at optimum

optimHessMethod:

default “optimHess”, may be “nlm” or one of the optim methods

Imult:

default 2; used for preparing the Cholesky decompositions for updating in the Jacobian function

super:

if NULL (default), set to FALSE to use a simplicial decomposition for the sparse Cholesky decomposition and method “Matrix_J”, set to as.logical(NA) for method “Matrix”, if TRUE, use a supernodal decomposition

cheb_q:

default 5; highest power of the approximating polynomial for the Chebyshev approximation

MC_p:

default 16; number of random variates

MC_m:

default 30; number of products of random variates matrix and spatial weights matrix

type

default “MC”, used with method “moments”; alternatives “mult” and “moments”, for use if trs is missing, trW

correct

default TRUE, used with method “moments” to compute the Smirnov/Anselin correction term

trunc

default TRUE, used with method “moments” to truncate the Smirnov/Anselin correction term

SE_method

default “LU”, may be “MC”

nrho

default 200, as in SE toolbox; the size of the first stage lndet grid; it may be reduced to for example 40

interpn

default 2000, as in SE toolbox; the size of the second stage lndet grid

small_asy

default TRUE; if the method is not “eigen”, use asymmetric covariances rather than numerical Hessian ones if n <= small

small

default 1500; threshold number of observations for asymmetric covariances when the method is not “eigen”

SElndet

default NULL, may be used to pass a pre-computed SE toolbox style matrix of coefficients and their lndet values to the "SE_classic" and "SE_whichMin" methods

LU_order

default FALSE; used in “LU_prepermutate”, note warnings given for lu method

pre_eig

default NULL; may be used to pass a pre-computed vector of eigenvalues

Note

The standard errors given in Waller and Gotway (2004) are adjusted for the numbers of parameters estimated, and may be reproduced by using the additional argument adj.se=TRUE in the summary method. In addition, the function returns fitted values and residuals as given by Cressie (1993) p. 564.

Author(s)

Roger Bivand [email protected]

References

Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion; Ord, J. K. 1975 Estimation methods for models of spatial interaction, Journal of the American Statistical Association, 70, 120-126; Waller, L. A., Gotway, C. A. 2004 Applied spatial statistics for public health, Wiley, Hoboken, NJ, 325-380; Cressie, N. A. C. 1993 Statistics for spatial data, Wiley, New York, 548-568; Ripley, B. D. 1981 Spatial statistics, Wiley, New York, 88-95; LeSage J and RK Pace (2009) Introduction to Spatial Econometrics. CRC Press, Boca Raton.

See Also

optimize, errorsarlm, do_ldet

Examples

require("sf", quietly=TRUE)
nydata <- st_read(system.file("shapes/NY8_bna_utm18.gpkg", package="spData")[1], quiet=TRUE)
## Not run: 
lm0 <- lm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata)
summary(lm0)
lm0w <- lm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata, weights=POP8)
summary(lm0w)

## End(Not run)
suppressMessages(nyadjmat <- as.matrix(foreign::read.dbf(system.file(
 "misc/nyadjwts.dbf", package="spData")[1])[-1]))
suppressMessages(ID <- as.character(names(foreign::read.dbf(system.file(
 "misc/nyadjwts.dbf", package="spData")[1]))[-1]))
identical(substring(ID, 2, 10), substring(as.character(nydata$AREAKEY), 2, 10))
#require("spdep", quietly=TRUE)
listw_NY <- spdep::mat2listw(nyadjmat, as.character(nydata$AREAKEY), style="B")
eigs <- eigenw(listw_NY)
## Not run: 
esar0 <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY)
summary(esar0)
system.time(esar1f <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
 data=nydata, listw=listw_NY, family="SAR", method="eigen",
 control=list(pre_eig=eigs)))
res <- summary(esar1f)
print(res)
coef(res)
sqrt(diag(res$resvar))
sqrt(diag(esar1f$fit$imat)*esar1f$fit$s2)
sqrt(diag(esar1f$fdHess))
system.time(esar1M <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
 data=nydata, listw=listw_NY, family="SAR", method="Matrix"))
summary(esar1M)
system.time(esar1M <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
 data=nydata, listw=listw_NY, family="SAR", method="Matrix",
 control=list(super=TRUE)))
summary(esar1M)
esar1wf <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, weights=POP8, family="SAR", method="eigen",
 control=list(pre_eig=eigs))
summary(esar1wf)
system.time(esar1wM <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
 data=nydata, listw=listw_NY, weights=POP8, family="SAR", method="Matrix"))
summary(esar1wM)
esar1wlu <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, weights=POP8, family="SAR", method="LU")
summary(esar1wlu)
esar1wch <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, weights=POP8, family="SAR", method="Chebyshev")
summary(esar1wch)

## End(Not run)
ecar1f <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, family="CAR", method="eigen",
 control=list(pre_eig=eigs))
summary(ecar1f)
## Not run: 
system.time(ecar1M <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
 data=nydata, listw=listw_NY, family="CAR", method="Matrix"))
summary(ecar1M)

## End(Not run)
ecar1wf <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, weights=POP8, family="CAR", method="eigen",
 control=list(pre_eig=eigs))
summary(ecar1wf)
## Not run: 
system.time(ecar1wM <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
 data=nydata, listw=listw_NY, weights=POP8, family="CAR", method="Matrix"))
summary(ecar1wM)

## End(Not run)
## Not run: 
require("sf", quietly=TRUE)
nc.sids <- st_read(system.file("shapes/sids.gpkg", package="spData")[1], quiet=TRUE)
ft.SID74 <- sqrt(1000)*(sqrt(nc.sids$SID74/nc.sids$BIR74) +
 sqrt((nc.sids$SID74+1)/nc.sids$BIR74))
lm_nc <- lm(ft.SID74 ~ 1)
sids.nhbr30 <- spdep::dnearneigh(cbind(nc.sids$east, nc.sids$north), 0, 30,
 row.names=row.names(nc.sids))
sids.nhbr30.dist <- spdep::nbdists(sids.nhbr30, cbind(nc.sids$east, nc.sids$north))
sids.nhbr <- spdep::listw2sn(spdep::nb2listw(sids.nhbr30,
 glist=sids.nhbr30.dist, style="B", zero.policy=TRUE))
dij <- sids.nhbr[,3]
n <- nc.sids$BIR74
el1 <- min(dij)/dij
el2 <- sqrt(n[sids.nhbr$to]/n[sids.nhbr$from])
sids.nhbr$weights <- el1*el2
sids.nhbr.listw <- spdep::sn2listw(sids.nhbr)
both <- factor(paste(nc.sids$L_id, nc.sids$M_id, sep=":"))
ft.NWBIR74 <- sqrt(1000)*(sqrt(nc.sids$NWBIR74/nc.sids$BIR74) +
 sqrt((nc.sids$NWBIR74+1)/nc.sids$BIR74))
mdata <- data.frame(both, ft.NWBIR74, ft.SID74, BIR74=nc.sids$BIR74)
outl <- which.max(rstandard(lm_nc))
as.character(nc.sids$NAME[outl])
mdata.4 <- mdata[-outl,]
W <- spdep::listw2mat(sids.nhbr.listw)
W.4 <- W[-outl, -outl]
sids.nhbr.listw.4 <- spdep::mat2listw(W.4)
esarI <- errorsarlm(ft.SID74 ~ 1, data=mdata, listw=sids.nhbr.listw,
 zero.policy=TRUE)
summary(esarI)
esarIa <- spautolm(ft.SID74 ~ 1, data=mdata, listw=sids.nhbr.listw,
 family="SAR")
summary(esarIa)
esarIV <- errorsarlm(ft.SID74 ~ ft.NWBIR74, data=mdata, listw=sids.nhbr.listw,
 zero.policy=TRUE)
summary(esarIV)
esarIVa <- spautolm(ft.SID74 ~ ft.NWBIR74, data=mdata, listw=sids.nhbr.listw,
 family="SAR")
summary(esarIVa)
esarIaw <- spautolm(ft.SID74 ~ 1, data=mdata, listw=sids.nhbr.listw,
 weights=BIR74, family="SAR")
summary(esarIaw)
esarIIaw <- spautolm(ft.SID74 ~ both - 1, data=mdata, listw=sids.nhbr.listw,
 weights=BIR74, family="SAR")
summary(esarIIaw)
esarIVaw <- spautolm(ft.SID74 ~ ft.NWBIR74, data=mdata,
 listw=sids.nhbr.listw, weights=BIR74, family="SAR")
summary(esarIVaw)
ecarIaw <- spautolm(ft.SID74 ~ 1, data=mdata.4, listw=sids.nhbr.listw.4,
 weights=BIR74, family="CAR")
summary(ecarIaw)
ecarIIaw <- spautolm(ft.SID74 ~ both - 1, data=mdata.4,
 listw=sids.nhbr.listw.4, weights=BIR74, family="CAR")
summary(ecarIIaw)
ecarIVaw <- spautolm(ft.SID74 ~ ft.NWBIR74, data=mdata.4,
 listw=sids.nhbr.listw.4, weights=BIR74, family="CAR")
summary(ecarIVaw)
nc.sids$fitIV <- append(fitted.values(ecarIVaw), NA, outl-1)
plot(nc.sids[,"fitIV"], nbreaks=12) # Cressie 1993, p. 565

## End(Not run)
## Not run: 
data(oldcol, package="spdep")
COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
 spdep::nb2listw(COL.nb, style="W"))
summary(COL.errW.eig)
COL.errW.sar <- spautolm(CRIME ~ INC + HOVAL, data=COL.OLD,
 spdep::nb2listw(COL.nb, style="W"))
summary(COL.errW.sar)
data(boston, package="spData")
gp1 <- spautolm(log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2)
 + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT), 
 data=boston.c, spdep::nb2listw(boston.soi), family="SMA")
summary(gp1)

## End(Not run)

Bayesian MCMC spatial simultaneous autoregressive model estimation

Description

The spBreg_lag function is an early-release version of the Matlab Spatial Econometrics Toolbox function sar_g.m, using drawing by inversion, and not accommodating heteroskedastic disturbances.

Usage

spBreg_lag(formula, data = list(), listw, na.action, Durbin, type,
    zero.policy=NULL, control=list())
spBreg_sac(formula, data = list(), listw, listw2=NULL, na.action, 
    Durbin, type, zero.policy=NULL, control=list())
spBreg_err(formula, data = list(), listw, na.action, Durbin, etype,
    zero.policy=NULL, control=list())
## S3 method for class 'MCMC_sar_G'
impacts(obj, ..., tr=NULL, listw=NULL, evalues=NULL, Q=NULL)
## S3 method for class 'MCMC_sem_G'
impacts(obj, ..., tr=NULL, listw=NULL, evalues=NULL, Q=NULL)
## S3 method for class 'MCMC_sac_G'
impacts(obj, ..., tr=NULL, listw=NULL, evalues=NULL, Q=NULL)

Arguments

formula

a symbolic description of the model to be fit. The details of model specification are given for lm()

data

an optional data frame containing the variables in the model. By default the variables are taken from the environment which the function is called.

listw, listw2

a listw object created for example by nb2listw

na.action

a function (default options("na.action")), can also be na.omit or na.exclude with consequences for residuals and fitted values - in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to nb2listw may be subsetted.

Durbin

default FALSE (spatial lag model); if TRUE, full spatial Durbin model; if a formula object, the subset of explanatory variables to lag

type, etype

(use the ‘Durbin=’ argument - retained for backwards compatibility only) default "lag", may be set to "mixed"; when "mixed", the lagged intercept is dropped for spatial weights style "W", that is row-standardised weights, but otherwise included; “Durbin” may be used instead of “mixed”

zero.policy

default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE (default) assign NA

control

list of extra control arguments - see section below

obj

A spatial regression object

...

Arguments passed through to methods in the coda package

tr

A vector of traces of powers of the spatial weights matrix created using trW, for approximate impact measures; if not given, listw must be given for exact measures (for small to moderate spatial weights matrices); the traces must be for the same spatial weights as were used in fitting the spatial regression, and must be row-standardised

evalues

vector of eigenvalues of spatial weights matrix for impacts calculations

Q

default NULL, else an integer number of cumulative power series impacts to calculate if tr is given

Control arguments

tol.opt:

the desired accuracy of the optimization - passed to optimize() (default=square root of double precision machine tolerance, a larger root may be used needed, see help(boston) for an example)

fdHess:

default NULL, then set to (method != "eigen") internally; use fdHess to compute an approximate Hessian using finite differences when using sparse matrix methods; used to make a coefficient covariance matrix when the number of observations is large; may be turned off to save resources if need be

optimHess:

default FALSE, use fdHess from nlme, if TRUE, use optim to calculate Hessian at optimum

optimHessMethod:

default “optimHess”, may be “nlm” or one of the optim methods

compiled_sse:

default FALSE; logical value used in the log likelihood function to choose compiled code for computing SSE

Imult:

default 2; used for preparing the Cholesky decompositions for updating in the Jacobian function

super:

if NULL (default), set to FALSE to use a simplicial decomposition for the sparse Cholesky decomposition and method “Matrix_J”, set to as.logical(NA) for method “Matrix”, if TRUE, use a supernodal decomposition

cheb_q:

default 5; highest power of the approximating polynomial for the Chebyshev approximation

MC_p:

default 16; number of random variates

MC_m:

default 30; number of products of random variates matrix and spatial weights matrix

spamPivot:

default “MMD”, alternative “RCM”

in_coef

default 0.1, coefficient value for initial Cholesky decomposition in “spam_update”

type

default “MC”, used with method “moments”; alternatives “mult” and “moments”, for use if trs is missing, trW

correct

default TRUE, used with method “moments” to compute the Smirnov/Anselin correction term

trunc

default TRUE, used with method “moments” to truncate the Smirnov/Anselin correction term

SE_method

default “LU”, may be “MC”

nrho

default 200, as in SE toolbox; the size of the first stage lndet grid; it may be reduced to for example 40

interpn

default 2000, as in SE toolbox; the size of the second stage lndet grid

small_asy

default TRUE; if the method is not “eigen”, use asymmetric covariances rather than numerical Hessian ones if n <= small

small

default 1500; threshold number of observations for asymmetric covariances when the method is not “eigen”

SElndet

default NULL, may be used to pass a pre-computed SE toolbox style matrix of coefficients and their lndet values to the "SE_classic" and "SE_whichMin" methods

LU_order

default FALSE; used in “LU_prepermutate”, note warnings given for lu method

pre_eig

default NULL; may be used to pass a pre-computed vector of eigenvalues

OrdVsign

default 1; used to set the sign of the final component to negative if -1 (alpha times ((sigma squared) squared) in Ord (1975) equation B.1).

Extra Bayesian control arguments

ldet_method

default “SE_classic”; equivalent to the method argument in lagsarlm

interval

default c(-1, 1); used unmodified or set internally by jacobianSetup

ndraw

default 2500L; integer total number of draws

nomit

default 500L; integer total number of omitted burn-in draws

thin

default 1L; integer thinning proportion

verbose

default FALSE; inverse of quiet argument in lagsarlm

detval

default NULL; not yet in use, precomputed matrix of log determinants

prior

a list with the following components:

rhoMH, lambdaMH

default FALSE; use Metropolis or griddy Gibbs

Tbeta

default NULL; values of the betas variance-covariance matrix, set to diag(k)*1e+12 if NULL

c_beta

default NULL; values of the betas set to 0 if NULL

rho

default 0.5; value of the autoregressive coefficient

sige

default 1; value of the residual variance

nu

default 0; informative Gamma(nu,d0) prior on sige

d0

default 0; informative Gamma(nu,d0) prior on sige

a1

default 1.01; parameter for beta(a1,a2) prior on rho

a2

default 1.01; parameter for beta(a1,a2) prior on rho

cc

default 0.2; initial tuning parameter for M-H sampling

gG_sige

default TRUE; include sige in lambda griddy Gibbs update

cc1

default 0.2; initial tuning parameter for M-H sampling

cc2

default 0.2; initial tuning parameter for M-H sampling

Author(s)

Roger Bivand [email protected], with thanks to Abhirup Mallik and Virgilio Gómez-Rubio for initial coding GSoC 2011

References

LeSage J and RK Pace (2009) Introduction to Spatial Econometrics. CRC Press, Boca Raton.

Examples

#require("spdep", quietly=TRUE)
data(oldcol, package="spdep")
lw <- spdep::nb2listw(COL.nb, style="W")
require("coda", quietly=TRUE)
set.seed(1)
COL.err.Bayes <- spBreg_err(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw)
print(summary(COL.err.Bayes))
print(raftery.diag(COL.err.Bayes, r=0.01))
## Not run: 
ev <- eigenw(lw)
W <- as(lw, "CsparseMatrix")
trMatc <- trW(W, type="mult")
set.seed(1)
COL.err.Bayes <- spBreg_err(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw,
 control=list(prior=list(lambdaMH=TRUE)))
print(summary(COL.err.Bayes))
print(raftery.diag(COL.err.Bayes, r=0.01))
set.seed(1)
COL.err.Bayes <- spBreg_err(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw,
 Durbin=TRUE)
print(summary(COL.err.Bayes))
print(summary(impacts(COL.err.Bayes)))
print(raftery.diag(COL.err.Bayes, r=0.01))
set.seed(1)
COL.err.Bayes <- spBreg_err(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw,
 Durbin=TRUE, control=list(prior=list(lambdaMH=TRUE)))
print(summary(COL.err.Bayes))
print(summary(impacts(COL.err.Bayes)))
print(raftery.diag(COL.err.Bayes, r=0.01))
set.seed(1)
COL.err.Bayes <- spBreg_err(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw,
 Durbin=~INC)
print(summary(COL.err.Bayes))
print(summary(impacts(COL.err.Bayes)))
print(raftery.diag(COL.err.Bayes, r=0.01))
set.seed(1)
COL.err.Bayes <- spBreg_err(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw,
 Durbin=~INC, control=list(prior=list(lambdaMH=TRUE)))
print(summary(COL.err.Bayes))
print(summary(impacts(COL.err.Bayes)))
print(raftery.diag(COL.err.Bayes, r=0.01))
set.seed(1)
COL.sacW.B0 <- spBreg_sac(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw,
 Durbin=FALSE, control=list(ndraw=1500L, nomit=500L))
print(summary(COL.sacW.B0))
print(summary(impacts(COL.sacW.B0, tr=trMatc), zstats=TRUE, short=TRUE))
set.seed(1)
COL.sacW.B1 <- spBreg_sac(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw,
 Durbin=TRUE, control=list(ndraw=1500L, nomit=500L))
print(summary(COL.sacW.B1))
print(summary(impacts(COL.sacW.B1, tr=trMatc), zstats=TRUE, short=TRUE))
set.seed(1)
COL.lag.Bayes <- spBreg_lag(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw=lw)
print(summary(COL.lag.Bayes))
print(summary(impacts(COL.lag.Bayes, tr=trMatc), short=TRUE, zstats=TRUE))
print(summary(impacts(COL.lag.Bayes, evalues=ev), short=TRUE, zstats=TRUE))
set.seed(1)
COL.D0.Bayes <- spBreg_lag(CRIME ~ INC + HOVAL, data=COL.OLD,
 listw=lw, Durbin=TRUE)
print(summary(COL.D0.Bayes))
print(summary(impacts(COL.D0.Bayes, tr=trMatc), short=TRUE, zstats=TRUE))
set.seed(1)
COL.D1.Bayes <- spBreg_lag(CRIME ~ DISCBD + INC + HOVAL, data=COL.OLD,
 listw=lw, Durbin= ~ INC)
print(summary(COL.D1.Bayes))
print(summary(impacts(COL.D1.Bayes, tr=trMatc), short=TRUE, zstats=TRUE))
#data(elect80, package="spData")
#lw <- spdep::nb2listw(e80_queen, zero.policy=TRUE)
#el_ml <- lagsarlm(log(pc_turnout) ~ log(pc_college) + log(pc_homeownership)
# + log(pc_income), data=elect80, listw=lw, zero.policy=TRUE, method="LU")
#print(summary(el_ml))
#set.seed(1)
#el_B <- spBreg_lag(log(pc_turnout) ~ log(pc_college) + log(pc_homeownership)
# + log(pc_income), data=elect80, listw=lw, zero.policy=TRUE)
#print(summary(el_B))
#print(el_ml$timings)
#print(attr(el_B, "timings"))

## End(Not run)

Generalized spatial two stage least squares

Description

The function fits a spatial lag model by two stage least squares, with the option of adjusting the results for heteroskedasticity.

Usage

stsls(formula, data = list(), listw, zero.policy = NULL,
 na.action = na.fail, robust = FALSE, HC=NULL, legacy=FALSE, W2X = TRUE,
 sig2n_k=TRUE, adjust.n=FALSE)
## S3 method for class 'Stsls'
impacts(obj, ..., tr, R = NULL, listw = NULL, evalues=NULL,
 tol = 1e-06, empirical = FALSE, Q=NULL)

Arguments

formula

a symbolic description of the model to be fit. The details of model specification are given for lm()

data

an optional data frame containing the variables in the model. By default the variables are taken from the environment which the function is called.

listw

a listw object created for example by nb2listw

zero.policy

default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE (default) assign NA - causing lagsarlm() to terminate with an error

na.action

a function (default na.fail), can also be na.omit or na.exclude with consequences for residuals and fitted values - in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to nb2listw may be subsetted.

robust

default FALSE, if TRUE, apply a heteroskedasticity correction to the coefficients covariances

HC

default NULL, if robust is TRUE, assigned “HC0”, may take values “HC0” or “HC1” for White estimates or MacKinnon-White estimates respectively

legacy

the argument chooses between two implementations of the robustness correction: default FALSE - use the estimate of Omega only in the White consistent estimator of the variance-covariance matrix, if TRUE, use the original implementation which runs a GLS using the estimate of Omega, overrides sig2n_k, and yields different coefficient estimates as well - see example below

W2X

default TRUE, if FALSE only WX are used as instruments in the spatial two stage least squares; until release 0.4-60, only WX were used - see example below; Python spreg::GM_Lag is default FALSE

sig2n_k

default TRUE - use n-k to calculate sigma^2, if FALSE use n; Python spreg::GM_Lag is default FALSE

adjust.n

default FALSE, used in creating spatial weights constants for the Anselin-Kelejian (1997) test

obj

A spatial regression object created by lagsarlm, lagmess or by lmSLX; in HPDinterval.LagImpact, a LagImpact object

...

Arguments passed through to methods in the coda package

tr

A vector of traces of powers of the spatial weights matrix created using trW, for approximate impact measures; if not given, listw must be given for exact measures (for small to moderate spatial weights matrices); the traces must be for the same spatial weights as were used in fitting the spatial regression, and must be row-standardised

evalues

vector of eigenvalues of spatial weights matrix for impacts calculations

R

If given, simulations are used to compute distributions for the impact measures, returned as mcmc objects; the objects are used for convenience but are not output by an MCMC process

tol

Argument passed to mvrnorm: tolerance (relative to largest variance) for numerical lack of positive-definiteness in the coefficient covariance matrix

empirical

Argument passed to mvrnorm (default FALSE): if true, the coefficients and their covariance matrix specify the empirical not population mean and covariance matrix

Q

default NULL, else an integer number of cumulative power series impacts to calculate if tr is given

Details

The fitting implementation fits a spatial lag model:

y=ρWy+Xβ+εy = \rho W y + X \beta + \varepsilon

by using spatially lagged X variables as instruments for the spatially lagged dependent variable.

From version 1.3-6, the general Anselin-Kelejian (1997) test for residual spatial autocorrelation is added.

Value

an object of class "Stsls" containing:

coefficients

coefficient estimates

var

coefficient covariance matrix

sse

sum of squared errors

residuals

model residuals

df

degrees of freedom

Author(s)

Luc Anselin, Gianfranco Piras and Roger Bivand

References

Kelejian, H.H. and I.R. Prucha (1998). A generalized spatial two stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. Journal of Real Estate Finance and Economics 17, 99-121. doi:10.1023/A:1007707430416.

Anselin, L., & Kelejian, H. H. (1997). Testing for Spatial Error Autocorrelation in the Presence of Endogenous Regressors. International Regional Science Review, 20(1-2), 153-182. doi:10.1177/016001769702000109.

Roger Bivand, Gianfranco Piras (2015). Comparing Implementations of Estimation Methods for Spatial Econometrics. Journal of Statistical Software, 63(18), 1-36. doi:10.18637/jss.v063.i18.

See Also

lagsarlm

Examples

data(oldcol, package="spdep")
#require(spdep, quietly=TRUE)
lw <- spdep::nb2listw(COL.nb)
COL.lag.eig <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD, lw)
summary(COL.lag.eig, correlation=TRUE)
COL.lag.stsls <- stsls(CRIME ~ INC + HOVAL, data=COL.OLD, lw)
(x <- summary(COL.lag.stsls, correlation=TRUE))
coef(x)
W <- as(lw, "CsparseMatrix")
trMatc <- trW(W, type="mult")
loobj1 <- impacts(COL.lag.stsls, R=200, tr=trMatc)
summary(loobj1, zstats=TRUE, short=TRUE)
ev <- eigenw(lw)
loobj2 <- impacts(COL.lag.stsls, R=200, evalues=ev)
summary(loobj2, zstats=TRUE, short=TRUE)
require(coda)
HPDinterval(loobj1)
COL.lag.stslsW <- stsls(CRIME ~ INC + HOVAL, data=COL.OLD, lw, W2X=FALSE)
summary(COL.lag.stslsW, correlation=TRUE)
COL.lag.stslsWn <- stsls(CRIME ~ INC + HOVAL, data=COL.OLD, lw, W2X=FALSE, sig2n_k=FALSE)
summary(COL.lag.stslsWn, correlation=TRUE)
COL.lag.stslsR <- stsls(CRIME ~ INC + HOVAL, data=COL.OLD, lw,
robust=TRUE, W2X=FALSE)
summary(COL.lag.stslsR, correlation=TRUE)
COL.lag.stslsRl <- stsls(CRIME ~ INC + HOVAL, data=COL.OLD, lw,
robust=TRUE, legacy=TRUE, W2X=FALSE)
summary(COL.lag.stslsRl, correlation=TRUE)
data(boston, package="spData")
gp2a <- stsls(log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2) +
  AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT),
 data=boston.c, spdep::nb2listw(boston.soi))
summary(gp2a)

Spatial weights matrix powers traces

Description

The function is used to prepare a vector of traces of powers of a spatial weights matrix

Usage

trW(W=NULL, m = 30, p = 16, type = "mult", listw=NULL, momentsSymmetry=TRUE)
mom_calc(lw, m)
mom_calc_int2(is, m, nb, weights, Card)

Arguments

W

A spatial weights matrix in CsparseMatrix form

m

The number of powers; must be an even number for ‘type’=“moments” (default changed from 100 to 30 (2010-11-17))

p

The number of samples used in Monte Carlo simulation of the traces if type is MC (default changed from 50 to 16 (2010-11-17))

type

Either “mult” (default) for powering a sparse matrix (with moderate or larger N, the matrix becomes dense, and may lead to swapping), or “MC” for Monte Carlo simulation of the traces (the first two simulated traces are replaced by their analytical equivalents), or “moments” to use the looping space saving algorithm proposed by Smirnov and Anselin (2009) - for “moments”, W must be symmetric, for row-standardised weights through a similarity transformation

listw, lw

a listw object, which should either be fully symmetric, or be constructed as similar to symmetric from intrinsically symmetric neighbours using similar.listw, used with ‘type’=“moments”

momentsSymmetry

default TRUE; assert Smirnov/Anselin symmetry assumption

is

(used internally only in mom_calc_int2 for ‘type’=“moments” on a cluster)

nb

(used internally only in mom_calc_int2 for ‘type’=“moments” on a cluster)

weights

(used internally only in mom_calc_int2 for ‘type’=“moments” on a cluster)

Card

(used internally only in mom_calc_int2 for ‘type’=“moments” on a cluster)

Value

A numeric vector of m traces, with “timings” and “type” attributes; the ‘type’=“MC” also returns the standard deviation of the p-vector V divided by the square root of p as a measure of spread for the trace estimates.

Note

mom_calc and mom_calc_int2 are for internal use only

Author(s)

Roger Bivand [email protected]

References

LeSage J and RK Pace (2009) Introduction to Spatial Econometrics. CRC Press, Boca Raton, pp. 96–105; Smirnov O and L Anselin (2009) An O(N) parallel method of computing the Log-Jacobian of the variable transformation for models with spatial interaction on a lattice. Computational Statistics and Data Analysis 53 (2009) 2983–2984.

See Also

as_dgRMatrix_listw, nb2listw

Examples

require("sf", quietly=TRUE) 
columbus <- st_read(system.file("shapes/columbus.gpkg", package="spData")[1], quiet=TRUE)
#require(spdep, quietly=TRUE)
col.gal.nb <- spdep::read.gal(system.file("weights/columbus.gal", package="spData")[1])
listw <- spdep::nb2listw(col.gal.nb)
W <- as(listw, "CsparseMatrix")
system.time(trMat <- trW(W, type="mult"))
str(trMat)
set.seed(1100)
system.time(trMC <- trW(W, type="MC"))
str(trMC)
plot(trMat, trMC)
abline(a=0, b=1)
for(i in 3:length(trMC)) {
 segments(trMat[i], trMC[i]-2*attr(trMC, "sd")[i], trMat[i],
  trMC[i]+2*attr(trMC, "sd")[i])
}
listwS <- similar.listw(listw)
W <- forceSymmetric(as(listwS, "CsparseMatrix"))
system.time(trmom <- trW(listw=listwS, m=24, type="moments"))
str(trmom)
all.equal(trMat[1:24], trmom, check.attributes=FALSE)
system.time(trMat <- trW(W, m=24, type="mult"))
str(trMat)
all.equal(trMat, trmom, check.attributes=FALSE)
set.seed(1)
system.time(trMC <- trW(W, m=24, type="MC"))
str(trMC)
## Not run: 
data(boston, package="spData")
listw <- spdep::nb2listw(boston.soi)
listwS <- similar.listw(listw)
system.time(trmom <- trW(listw=listwS, m=24, type="moments"))
str(trmom)
library(parallel)
nc <- max(2L, detectCores(logical=FALSE), na.rm = TRUE)-1L
# set nc to 1L here
if (nc > 1L) nc <- 1L
coresOpt <- get.coresOption()
invisible(set.coresOption(nc))
if(!get.mcOption()) {
  cl <- makeCluster(get.coresOption())
  set.ClusterOption(cl)
}
system.time(trmomp <- trW(listw=listwS, m=24, type="moments"))
if(!get.mcOption()) {
  set.ClusterOption(NULL)
  stopCluster(cl)
}
all.equal(trmom, trmomp, check.attributes=FALSE)
invisible(set.coresOption(coresOpt))

## End(Not run)