Title: | R Bindings for Calling the 'Earth Engine' API |
---|---|
Description: | Earth Engine <https://earthengine.google.com/> client library for R. All of the 'Earth Engine' API classes, modules, and functions are made available. Additional functions implemented include importing (exporting) of Earth Engine spatial objects, extraction of time series, interactive map display, assets management interface, and metadata display. See <https://r-spatial.github.io/rgee/> for further details. |
Authors: | Cesar Aybar [aut, cre] , Wu Qiusheng [ctb] , Lesly Bautista [ctb] , Roy Yali [ctb] , Antony Barja [ctb] , Kevin Ushey [ctb], Jeroen Ooms [ctb] , Tim Appelhans [ctb], JJ Allaire [ctb], Yuan Tang [ctb], Samapriya Roy [ctb], MariaElena Adauto [ctb] , Gabriel Carrasco [ctb] , Henrik Bengtsson [ctb], Jeffrey Hollister [rev] (Hollister reviewed the package for JOSS, see https://github.com/openjournals/joss-reviews/issues/2272/), Gennadii Donchyts [rev] (Gena reviewed the package for JOSS, see https://github.com/openjournals/joss-reviews/issues/2272/), Marius Appel [rev] (Appel reviewed the package for JOSS, see https://github.com/openjournals/joss-reviews/issues/2272/) |
Maintainer: | Cesar Aybar <[email protected]> |
License: | Apache License (>= 2.0) |
Version: | 1.1.7 |
Built: | 2025-01-22 02:54:45 UTC |
Source: | https://github.com/r-spatial/rgee |
Google Earth Engine (Gorelick et al., 2017) is a cloud computing platform
designed for planetary-scale environmental data analysis that only can be
accessed via the Earth Engine code editor, third-party web apps, and the
JavaScript and Python client libraries. rgee
is a non-official
client library for R that uses reticulate
to wrap the Earth Engine
Python API and provide R users with a familiar interface, rapid development
features, and flexibility to analyze data using open-source, R third-party
packages.
The package implements and supports:
Earth Engine Module
Install or set all rgee dependencies
Check non-R dependencies
Clean non-R dependencies
Session management
Transform an R Date to an EE Date or vice versa
Create Interactive visualization Maps
Image download
Vector download
Generic download
Assets management
Upload raster
Upload vector
Upload generic
Extract values
Helper functions
Utils functions
Interface to main Earth Engine module. Provides access to top level classes and functions as well as sub-modules (e.g. ee$Image, ee$FeatureCollection$first, etc.).
--------------------------- | --------------------------------------------------------------------------------------------------- |
ee
|
Main Earth Engine module. |
--------------------------- | --------------------------------------------------------------------------------------------------- |
--------------------------- | --------------------------------------------------------------------------------------------------- |
ee_install
|
Create an isolated Python virtual environment with all rgee dependencies. |
ee_install_set_pyenv
|
Configure which version of Python to use with rgee. |
ee_install_upgrade
|
Upgrade the Earth Engine Python API. |
--------------------------- | --------------------------------------------------------------------------------------------------- |
--------------------------- | --------------------------------------------------------------------------------------------------- |
ee_check
|
Check all non-R dependencies. |
ee_check_python
|
Check Python environment. |
ee_check_credentials
|
Check Google credentials. |
ee_check_python_packages
|
Check Python packages: earthengine-api and numpy. |
--------------------------- | --------------------------------------------------------------------------------------------------- |
--------------------------- | --------------------------------------------------------------------------------------------------- |
ee_clean_container
|
Delete files from either a Folder or a Bucket. |
ee_clean_pyenv
|
Remove rgee system variables from .Renviron. |
--------------------------- | --------------------------------------------------------------------------------------------------- |
--------------------------- | --------------------------------------------------------------------------------------------------- |
ee_Initialize
|
Authenticate and Initialize Earth Engine. |
ee_version
|
Earth Engine API version. |
ee_user_info
|
Display the credentials and general info of the initialized user. |
ee_users
|
Display the credentials of all users as a table. |
ee_get_assethome
|
Get the Asset home name. |
ee_get_earthengine_path
|
Get the path where the credentials are stored. |
--------------------------- | --------------------------------------------------------------------------------------------------- |
--------------------------- | --------------------------------------------------------------------------------------------------- |
eedate_to_rdate
|
Pass an Earth Engine date object to R. |
rdate_to_eedate
|
Pass an R date object to Earth Engine. |
ee_get_date_img
|
Get the date of a EE Image. |
ee_get_date_ic
|
Get the date of a EE ImageCollection. |
--------------------------- | --------------------------------------------------------------------------------------------------- |
--------------------------- | --------------------------------------------------------------------------------------------------- |
Map
|
R6 object (Map) to display Earth Engine (EE) spatial objects. |
R6Map
|
R6 class to display Earth Engine (EE) spatial objects. |
--------------------------- | --------------------------------------------------------------------------------------------------- |
--------------------------- | --------------------------------------------------------------------------------------------------- |
ee_as_raster
|
Convert an Earth Engine (EE) image in a raster object. |
ee_as_stars
|
Convert an Earth Engine (EE) image in a stars object. |
ee_as_thumbnail
|
Create an R spatial gridded object from an EE thumbnail image. |
ee_image_to_asset
|
Creates a task to export an EE Image to their EE Assets. |
ee_image_to_drive
|
Creates a task to export an EE Image to Drive. |
ee_image_to_gcs
|
Creates a task to export an EE Image to Google Cloud Storage. |
ee_image_info
|
Approximate size of an EE Image object. |
ee_imagecollection_to_local
|
Save an EE ImageCollection in their local system. |
--------------------------- | --------------------------------------------------------------------------------------------------- |
--------------------------- | --------------------------------------------------------------------------------------------------- |
ee_as_sf
|
Convert an Earth Engine table in an sf object. |
ee_table_to_asset
|
Creates a task to export a FeatureCollection to an EE table asset. |
ee_table_to_drive
|
Creates a task to export a FeatureCollection to Google Drive. |
ee_table_to_gcs
|
Creates a task to export a FeatureCollection to Google Cloud Storage. |
--------------------------- | --------------------------------------------------------------------------------------------------- |
--------------------------- | --------------------------------------------------------------------------------------------------- |
ee_drive_to_local
|
Move results from Google Drive to a local directory. |
ee_gcs_to_local
|
Move results from Google Cloud Storage to a local directory. |
--------------------------- | --------------------------------------------------------------------------------------------------- |
--------------------------- | --------------------------------------------------------------------------------------------------- |
ee_manage-tools
|
Interface to manage the Earth Engine Asset. |
--------------------------- | --------------------------------------------------------------------------------------------------- |
--------------------------- | --------------------------------------------------------------------------------------------------- |
stars_as_ee
|
Convert a stars or stars-proxy object into an EE Image object. |
raster_as_ee
|
Convert a Raster* object into an EE Image object. |
gcs_to_ee_image
|
Move a GeoTIFF image from GCS to their EE assets. |
--------------------------- | --------------------------------------------------------------------------------------------------- |
--------------------------- | --------------------------------------------------------------------------------------------------- |
gcs_to_ee_table
|
Move a zipped shapefile from GCS to their EE Assets. |
sf_as_ee
|
Convert an sf object to an EE object. |
--------------------------- | --------------------------------------------------------------------------------------------------- |
--------------------------- | --------------------------------------------------------------------------------------------------- |
local_to_gcs
|
Upload local files to Google Cloud Storage. |
--------------------------- | --------------------------------------------------------------------------------------------------- |
--------------------------- | --------------------------------------------------------------------------------------------------- |
ee_extract
|
Extract values from EE Images or ImageCollections objects. |
--------------------------- | --------------------------------------------------------------------------------------------------- |
--------------------------- | --------------------------------------------------------------------------------------------------- |
ee_help
|
Documentation for Earth Engine Objects. |
ee_print
|
Print and return metadata about Spatial Earth Engine Objects. |
ee_monitoring
|
Monitoring Earth Engine task progress. |
print
|
Print Earth Engine objects. |
--------------------------- | --------------------------------------------------------------------------------------------------- |
--------------------------- | --------------------------------------------------------------------------------------------------- |
ee_utils_py_to_r
|
Convert between Python and R objects. |
ee_utils_pyfunc
|
Wrap an R function in a Python function with the same signature. |
ee_utils_shp_to_zip
|
Create a zip file from an sf object. |
ee_utils_create_json
|
Convert a R list into a JSON file. |
ee_utils_create_manifest_image
|
Create a manifest to upload an image. |
ee_utils_create_manifest_table
|
Create a manifest to upload a table. |
ee_utils_get_crs
|
Convert EPSG, ESRI or SR-ORG code into a OGC WKT. |
ee_utils_future_value
|
The value of a future or the values of all elements in a container. |
ee_utils_dataset_display
|
Search into the Earth Engine Data Catalog. |
--------------------------- | --------------------------------------------------------------------------------------------------- |
We want to offer a special thanks to Justin Braaten for his wise and helpful comments in the whole development of rgee. As well, we would like to mention the following third-party R/Python packages for contributing indirectly to the improvement of rgee:
gee_asset_manager - Lukasz Tracewski
geeup - Samapriya Roy
geeadd - Samapriya Roy
eemont - David Montero Loaiza
cartoee - Kel Markert
geetools - Rodrigo E. Principe
landsat-extract-gee - Loïc Dutrieux
earthEngineGrabR - JesJehle
sf - Edzer Pebesma
stars - Edzer Pebesma
gdalcubes - Marius Appel
Maintainer: Cesar Aybar [email protected] (ORCID)
Other contributors:
Wu Qiusheng [email protected] (ORCID) [contributor]
Lesly Bautista [email protected] (ORCID) [contributor]
Roy Yali [email protected] (ORCID) [contributor]
Antony Barja [email protected] (ORCID) [contributor]
Kevin Ushey [email protected] [contributor]
Jeroen Ooms [email protected] (ORCID) [contributor]
Tim Appelhans [email protected] [contributor]
JJ Allaire [email protected] [contributor]
Yuan Tang [email protected] [contributor]
Samapriya Roy [email protected] [contributor]
MariaElena Adauto [email protected] (ORCID) [contributor]
Gabriel Carrasco [email protected] (ORCID) [contributor]
Henrik Bengtsson [email protected] [contributor]
Jeffrey Hollister [email protected] (Hollister reviewed the package for JOSS, see https://github.com/openjournals/joss-reviews/issues/2272/) [reviewer]
Gennadii Donchyts (Gena reviewed the package for JOSS, see https://github.com/openjournals/joss-reviews/issues/2272/) [reviewer]
Marius Appel [email protected] (Appel reviewed the package for JOSS, see https://github.com/openjournals/joss-reviews/issues/2272/) [reviewer]
Useful links:
Report bugs at https://github.com/r-spatial/rgee/issues/
Interface to main Earth Engine module. Provides access to the top level
classes and functions as well as sub-modules (e.g. ee$Image
,
ee$FeatureCollection$first
, etc.).
ee
ee
Earth Engine module
## Not run: library(rgee) ee_Initialize() ee_img <- ee$Image(0) ee_ic <- ee$ImageCollection(ee_img) print(ee_img$getInfo()) print(ee_ic$getInfo()) ## End(Not run)
## Not run: library(rgee) ee_Initialize() ee_img <- ee$Image(0) ee_ic <- ee$ImageCollection(ee_img) print(ee_img$getInfo()) print(ee_ic$getInfo()) ## End(Not run)
Convert an ee$Image in a SpatRaster object
ee_as_rast( image, region = NULL, dsn = NULL, via = "drive", container = "rgee_backup", scale = NULL, maxPixels = 1e+09, grid_batch = 1024 * 1024, lazy = FALSE, public = FALSE, add_metadata = TRUE, timePrefix = TRUE, quiet = FALSE, ... )
ee_as_rast( image, region = NULL, dsn = NULL, via = "drive", container = "rgee_backup", scale = NULL, maxPixels = 1e+09, grid_batch = 1024 * 1024, lazy = FALSE, public = FALSE, add_metadata = TRUE, timePrefix = TRUE, quiet = FALSE, ... )
image |
ee$Image to be converted into a SpatRaster object. |
region |
EE Geometry (ee$Geometry$Polygon) which specifies the region
to export. CRS needs to be the same that the argument |
dsn |
Character. Output filename. If missing, a temporary file is created. |
via |
Character. Method to export the image. Three methods are implemented: "getDownloadURL", "drive", "gcs". For "drive" and "gcs" see details. Use "getDownloadURL" for small images. |
container |
Character. Name of the folder ('drive') or bucket ('gcs') to be exported. |
scale |
Numeric. The resolution in meters per pixel. Defaults to the native resolution of the image. |
maxPixels |
Numeric. The maximum allowable number of pixels in the exported image. If the exported region covers more pixels than the specified limit in the given projection, the task will fail. Defaults to 100,000,000. |
grid_batch |
Numeric. Argument used if via is set as "getDownloadURL". The number of pixels to download in each batch without considering the number of bands. Default to 1048576 -(1024*1024). |
lazy |
Logical. If TRUE, a |
public |
Logical. If TRUE, a public link to the image is created. |
add_metadata |
Add metadata to the stars_proxy object. See details. |
timePrefix |
Logical. Add current date and time ( |
quiet |
Logical. Suppress info message |
... |
Extra exporting argument. See ee_image_to_drive and ee_image_to_gcs. |
ee_as_rast
supports the download of ee$Images
using: "drive"
(Google Drive) and "gcs"
(
Google Cloud Storage). In both cases, ee_as_rast
performs as follows:
1. A task is started (i.e., ee$batch$Task$start()
) to
move the ee$Image
from Earth Engine to the intermediate container
specified in the argument via
.
2. If the argument lazy
is TRUE, the task is not be
monitored. This is useful to lunch several tasks simultaneously and
calls them later using ee_utils_future_value
or
future::value
. At the end of this step,
the ee$Image
is stored on the path specified in the argument
dsn
.
3. Finally, if the argument add_metadata
is TRUE, a list
with the following elements are added to the stars-proxy object.
if via is "drive":
ee_id: Name of the Earth Engine task.
drive_name: Name of the Image in Google Drive.
drive_id: Id of the Image in Google Drive.
drive_download_link: Download link to the image.
if via is "gcs":
ee_id: Name of the Earth Engine task.
gcs_name: Name of the Image in Google Cloud Storage.
gcs_bucket: Name of the bucket.
gcs_fileFormat: Format of the image.
gcs_public_link: Download link to the image.
gcs_URI: gs:// link to the image.
Run attr(stars, "metadata")
to get the list.
For getting more information about exporting data from Earth Engine, take a look at the Google Earth Engine Guide - Export data.
A SpatRaster object
Other image download functions:
ee_as_raster()
,
ee_as_stars()
,
ee_as_thumbnail()
,
ee_imagecollection_to_local()
## Not run: library(rgee) ee_Initialize(drive = TRUE, gcs = TRUE) ee_user_info() # Define an image. img <- ee$Image("LANDSAT/LC08/C01/T1_SR/LC08_038029_20180810")$ select(c("B4", "B3", "B2"))$ divide(10000) # OPTIONAL display it using Map Map$centerObject(eeObject = img) Map$addLayer(eeObject = img, visParams = list(max = 0.4,gamma=0.1)) # Define an area of interest. geometry <- ee$Geometry$Rectangle( coords = c(-110.8, 44.6, -110.6, 44.7), proj = "EPSG:4326", geodesic = FALSE ) ## getDownloadURL - Method 01 (for small images) img_02 <- ee_as_stars( image = img, region = geometry, scale = 10 ) ## drive - Method 02 # Simple img_02 <- ee_as_rast( image = img, region = geometry, via = "drive" ) # Lazy img_02 <- ee_as_rast( image = img, region = geometry, via = "drive", lazy = TRUE ) img_02_result <- img_02 %>% ee_utils_future_value() attr(img_02_result, "metadata") # metadata ## gcs - Method 03 # Simple img_03 <- ee_as_rast( image = img, region = geometry, container = "rgee_dev", via = "gcs" ) # Lazy img_03 <- ee_as_rast( image = img, region = geometry, container = "rgee_dev", lazy = TRUE, via = "gcs" ) img_03_result <- img_03 %>% ee_utils_future_value() attr(img_03_result, "metadata") # metadata # OPTIONAL: clean containers # ee_clean_container(name = "rgee_backup", type = "drive") # ee_clean_container(name = "rgee_dev", type = "gcs") ## End(Not run)
## Not run: library(rgee) ee_Initialize(drive = TRUE, gcs = TRUE) ee_user_info() # Define an image. img <- ee$Image("LANDSAT/LC08/C01/T1_SR/LC08_038029_20180810")$ select(c("B4", "B3", "B2"))$ divide(10000) # OPTIONAL display it using Map Map$centerObject(eeObject = img) Map$addLayer(eeObject = img, visParams = list(max = 0.4,gamma=0.1)) # Define an area of interest. geometry <- ee$Geometry$Rectangle( coords = c(-110.8, 44.6, -110.6, 44.7), proj = "EPSG:4326", geodesic = FALSE ) ## getDownloadURL - Method 01 (for small images) img_02 <- ee_as_stars( image = img, region = geometry, scale = 10 ) ## drive - Method 02 # Simple img_02 <- ee_as_rast( image = img, region = geometry, via = "drive" ) # Lazy img_02 <- ee_as_rast( image = img, region = geometry, via = "drive", lazy = TRUE ) img_02_result <- img_02 %>% ee_utils_future_value() attr(img_02_result, "metadata") # metadata ## gcs - Method 03 # Simple img_03 <- ee_as_rast( image = img, region = geometry, container = "rgee_dev", via = "gcs" ) # Lazy img_03 <- ee_as_rast( image = img, region = geometry, container = "rgee_dev", lazy = TRUE, via = "gcs" ) img_03_result <- img_03 %>% ee_utils_future_value() attr(img_03_result, "metadata") # metadata # OPTIONAL: clean containers # ee_clean_container(name = "rgee_backup", type = "drive") # ee_clean_container(name = "rgee_dev", type = "gcs") ## End(Not run)
Convert an ee$Image in a raster object
ee_as_raster( image, region = NULL, dsn = NULL, via = "drive", container = "rgee_backup", scale = NULL, maxPixels = 1e+09, lazy = FALSE, public = FALSE, add_metadata = TRUE, timePrefix = TRUE, quiet = FALSE, ... )
ee_as_raster( image, region = NULL, dsn = NULL, via = "drive", container = "rgee_backup", scale = NULL, maxPixels = 1e+09, lazy = FALSE, public = FALSE, add_metadata = TRUE, timePrefix = TRUE, quiet = FALSE, ... )
image |
ee$Image to be converted into a raster object. |
region |
EE Geometry (ee$Geometry$Polygon) which specifies the region
to export. CRS needs to be the same that the argument |
dsn |
Character. Output filename. If missing, a temporary file is created. |
via |
Character. Method to export the image. Two methods are implemented: "drive", "gcs". See details. |
container |
Character. Name of the folder ('drive') or bucket ('gcs') to be exported. |
scale |
Numeric. The resolution in meters per pixel. Defaults to the native resolution of the image. |
maxPixels |
Numeric. The maximum allowed number of pixels in the exported image. The task will fail if the exported region covers more pixels in the specified projection. Defaults to 100,000,000. |
lazy |
Logical. If TRUE, a |
public |
Logical. If TRUE, a public link to the image is created. |
add_metadata |
Add metadata to the stars_proxy object. See details. |
timePrefix |
Logical. Add current date and time ( |
quiet |
Logical. Suppress info message |
... |
Extra exporting argument. See ee_image_to_drive and ee_image_to_gcs. |
ee_as_raster
supports the download of ee$Images
by two different options: "drive"
(Google Drive) and "gcs"
(
Google Cloud Storage). In both cases, ee_as_stars
works as follow:
1. A task is started (i.e., ee$batch$Task$start()
) to
move the ee$Image
from Earth Engine to the intermediate container
specified in the argument via
.
2. If the argument lazy
is TRUE, the task is not be
monitored. This is useful to lunch several tasks simultaneously and
calls them later using ee_utils_future_value
or
future::value
. At the end of this step,
the ee$Image
is stored on the path specified in the argument
dsn
.
3. Finally, if the argument add_metadata
is TRUE, a list
with the following elements are added to the stars-proxy object.
if via is "drive":
ee_id: Name of the Earth Engine task.
drive_name: Name of the Image in Google Drive.
drive_id: Id of the Image in Google Drive.
drive_download_link: Download link to the image.
if via is "gcs":
ee_id: Name of the Earth Engine task.
gcs_name: Name of the Image in Google Cloud Storage.
gcs_bucket: Name of the bucket.
gcs_fileFormat: Format of the image.
gcs_public_link: Download link to the image.
gcs_URI: gs:// link to the image.
Run raster@history@metadata
to get the list.
For getting more information about exporting data from Earth Engine, take a look at the Google Earth Engine Guide - Export data.
A RasterStack object
Other image download functions:
ee_as_rast()
,
ee_as_stars()
,
ee_as_thumbnail()
,
ee_imagecollection_to_local()
## Not run: library(rgee) ee_Initialize(drive = TRUE, gcs = TRUE) ee_user_info() # Define an image. img <- ee$Image("LANDSAT/LC08/C01/T1_SR/LC08_038029_20180810")$ select(c("B4", "B3", "B2"))$ divide(10000) # OPTIONAL display it using Map Map$centerObject(eeObject = img) Map$addLayer(eeObject = img, visParams = list(max = 0.4,gamma=0.1)) # Define an area of interest. geometry <- ee$Geometry$Rectangle( coords = c(-110.8, 44.6, -110.6, 44.7), proj = "EPSG:4326", geodesic = FALSE ) ## drive - Method 01 # Simple img_02 <- ee_as_raster( image = img, region = geometry, via = "drive" ) # Lazy img_02 <- ee_as_raster( image = img, region = geometry, via = "drive", lazy = TRUE ) img_02_result <- img_02 %>% ee_utils_future_value() img_02_result@history$metadata # metadata ## gcs - Method 02 # Simple img_03 <- ee_as_raster( image = img, region = geometry, container = "rgee_dev", via = "gcs" ) # Lazy img_03 <- ee_as_raster( image = img, region = geometry, container = "rgee_dev", lazy = TRUE, via = "gcs" ) img_03_result <- img_03 %>% ee_utils_future_value() img_03_result@history$metadata # metadata # OPTIONAL: clean containers # ee_clean_container(name = "rgee_backup", type = "drive") # ee_clean_container(name = "rgee_dev", type = "gcs") ## End(Not run)
## Not run: library(rgee) ee_Initialize(drive = TRUE, gcs = TRUE) ee_user_info() # Define an image. img <- ee$Image("LANDSAT/LC08/C01/T1_SR/LC08_038029_20180810")$ select(c("B4", "B3", "B2"))$ divide(10000) # OPTIONAL display it using Map Map$centerObject(eeObject = img) Map$addLayer(eeObject = img, visParams = list(max = 0.4,gamma=0.1)) # Define an area of interest. geometry <- ee$Geometry$Rectangle( coords = c(-110.8, 44.6, -110.6, 44.7), proj = "EPSG:4326", geodesic = FALSE ) ## drive - Method 01 # Simple img_02 <- ee_as_raster( image = img, region = geometry, via = "drive" ) # Lazy img_02 <- ee_as_raster( image = img, region = geometry, via = "drive", lazy = TRUE ) img_02_result <- img_02 %>% ee_utils_future_value() img_02_result@history$metadata # metadata ## gcs - Method 02 # Simple img_03 <- ee_as_raster( image = img, region = geometry, container = "rgee_dev", via = "gcs" ) # Lazy img_03 <- ee_as_raster( image = img, region = geometry, container = "rgee_dev", lazy = TRUE, via = "gcs" ) img_03_result <- img_03 %>% ee_utils_future_value() img_03_result@history$metadata # metadata # OPTIONAL: clean containers # ee_clean_container(name = "rgee_backup", type = "drive") # ee_clean_container(name = "rgee_dev", type = "gcs") ## End(Not run)
Convert an Earth Engine table into a sf object
ee_as_sf( x, dsn, overwrite = TRUE, via = "getInfo", container = "rgee_backup", crs = NULL, maxFeatures = 5000, selectors = NULL, lazy = FALSE, public = FALSE, add_metadata = TRUE, timePrefix = TRUE, quiet = FALSE )
ee_as_sf( x, dsn, overwrite = TRUE, via = "getInfo", container = "rgee_backup", crs = NULL, maxFeatures = 5000, selectors = NULL, lazy = FALSE, public = FALSE, add_metadata = TRUE, timePrefix = TRUE, quiet = FALSE )
x |
Earth Engine table (ee$FeatureCollection) to be converted into a sf object. |
dsn |
Character. Output filename. In case |
overwrite |
Logical. Delete data source |
via |
Character. Method to export the image. Three method are implemented: "getInfo", "drive", "gcs". See details. |
container |
Character. Name of the folder ('drive') or bucket ('gcs')
to be exported into (ignored if |
crs |
Integer or Character. Coordinate Reference System (CRS)
for the EE table. If it is NULL, |
maxFeatures |
Numeric. The maximum number of features allowed for export (ignore if |
selectors |
List of properties to include in the output, as a list/vector of strings or a comma-separated string. By default, all properties are included. |
lazy |
Logical. If TRUE, a |
public |
Logical. If TRUE, a public link to the file is created. See details. |
add_metadata |
Add metadata to the sf object. See details. |
timePrefix |
Logical. Add current date and time ( |
quiet |
Logical. Suppress info message. |
ee_as_sf
supports the download of ee$Geometry
, ee$Feature
,
and ee$FeatureCollection
by three different options:
"getInfo" (which make an REST call to retrieve the data), "drive"
(which use Google Drive)
and "gcs" (which use
Google Cloud Storage). The advantage of using "getInfo" is a
direct and faster download. However, there is a limit of 5000 features by
request, which makes it not recommendable for large FeatureCollection. Instead of
"getInfo", the "drive" and "gcs" options are suitable for large FeatureCollections
because they use an intermediate container. When via
is set as "drive" or "gcs"
ee_as_sf
performs the following steps:
1. A task is started (i.e., ee$batch$Task$start()
) to
move the EE Table from Earth Engine to the file storage system (Google Drive
or Google Cloud Storage) specified in the via
argument.
2. If the argument lazy
is TRUE, the task will not be
monitored. This is useful for launching several tasks simultaneously and
calling them later using ee_utils_future_value
or
future::value
. At the end of this step,
the EE Table is stored under the path specified by the argument
dsn
.
3. Finally, if the argument add_metadata
is TRUE, a list
with the following elements is added to the sf object.
if via is "drive":
ee_id: Earth Engine task name.
drive_name: Google Drive table name
drive_id: Google Drive table ID
drive_download_link: Link to download the table
if via is "gcs":
ee_id: Earth Engine task name.
gcs_name: Google Cloud Storage table name
gcs_bucket: Bucket name
gcs_fileFormat: Table format
gcs_public_link: Link to download the table.
gcs_URI: gs:// link to the table.
Run attr(sf, "metadata")
to get the list.
To get more information about exporting data from Earth Engine, take a look at the Google Earth Engine Guide - Export data.
An sf object.
## Not run: library(rgee) ee_Initialize(drive = TRUE, gcs = TRUE) # Region of interest roi <- ee$Geometry$Polygon(list( c(-122.275, 37.891), c(-122.275, 37.868), c(-122.240, 37.868), c(-122.240, 37.891) )) # TIGER: US Census Blocks Dataset blocks <- ee$FeatureCollection("TIGER/2010/Blocks") subset <- blocks$filterBounds(roi) sf_subset <- ee_as_sf(x = subset) plot(sf_subset) # Create Random points in Earth Engine region <- ee$Geometry$Rectangle(-119.224, 34.669, -99.536, 50.064) ee_help(ee$FeatureCollection$randomPoints) ee_randomPoints <- ee$FeatureCollection$randomPoints(region, 100) # Download via GetInfo sf_randomPoints <- ee_as_sf(ee_randomPoints) plot(sf_randomPoints) # Download via drive sf_randomPoints_drive <- ee_as_sf( x = ee_randomPoints, via = 'drive' ) # Download via GCS sf_randomPoints_gcs <- ee_as_sf( x = subset, via = 'gcs', container = 'rgee_dev' #GCS bucket name ) ## End(Not run)
## Not run: library(rgee) ee_Initialize(drive = TRUE, gcs = TRUE) # Region of interest roi <- ee$Geometry$Polygon(list( c(-122.275, 37.891), c(-122.275, 37.868), c(-122.240, 37.868), c(-122.240, 37.891) )) # TIGER: US Census Blocks Dataset blocks <- ee$FeatureCollection("TIGER/2010/Blocks") subset <- blocks$filterBounds(roi) sf_subset <- ee_as_sf(x = subset) plot(sf_subset) # Create Random points in Earth Engine region <- ee$Geometry$Rectangle(-119.224, 34.669, -99.536, 50.064) ee_help(ee$FeatureCollection$randomPoints) ee_randomPoints <- ee$FeatureCollection$randomPoints(region, 100) # Download via GetInfo sf_randomPoints <- ee_as_sf(ee_randomPoints) plot(sf_randomPoints) # Download via drive sf_randomPoints_drive <- ee_as_sf( x = ee_randomPoints, via = 'drive' ) # Download via GCS sf_randomPoints_gcs <- ee_as_sf( x = subset, via = 'gcs', container = 'rgee_dev' #GCS bucket name ) ## End(Not run)
Convert an ee$Image in a stars object.
ee_as_stars( image, region = NULL, dsn = NULL, via = "drive", container = "rgee_backup", scale = NULL, maxPixels = 1e+09, grid_batch = 1024 * 1024, lazy = FALSE, public = FALSE, add_metadata = TRUE, timePrefix = TRUE, quiet = FALSE, ... )
ee_as_stars( image, region = NULL, dsn = NULL, via = "drive", container = "rgee_backup", scale = NULL, maxPixels = 1e+09, grid_batch = 1024 * 1024, lazy = FALSE, public = FALSE, add_metadata = TRUE, timePrefix = TRUE, quiet = FALSE, ... )
image |
ee$Image to be converted into a 'stars' object. |
region |
EE Geometry (ee$Geometry$Polygon) that specifies the region
to export. CRS needs to be the same that the argument |
dsn |
Character. Output filename. If missing, a temporary file is created. |
via |
Character. Method to export the image. Three methods are available: "getDownloadURL", "drive", "gcs". For "drive" and "gcs" see details. Use "getDownloadURL" for small images. Default "getDownloadURL". |
container |
Character. Name of the folder ('drive') or bucket ('gcs') to be exported. |
scale |
Numeric. Image resolution given in meters per pixel. Defaults to the native resolution of the image. |
maxPixels |
Numeric. The maximum allowable number of pixels in the exported image. If the exported region covers more pixels than the specified limit in the given projection, the task will fail. Defaults to 100,000,000. |
grid_batch |
Numeric. Argument used if 'via' is set as "getDownloadURL". The number of pixels to download in each batch without considering the number of bands. Default to 1048576 -(1024*1024). |
lazy |
Logical. If TRUE, a |
public |
Logical. If TRUE, a public link to the image is created. |
add_metadata |
Add metadata to the stars_proxy object. See details. |
timePrefix |
Logical. Add current date and time ( |
quiet |
Logical. Suppress info message |
... |
Extra exporting argument. See ee_image_to_drive and ee_image_to_gcs. |
ee_as_stars
supports the download of ee$Images
by two different options: "drive"
(Google Drive) and "gcs"
(
Google Cloud Storage). In both cases, ee_as_stars
works as follow:
1. A task is started (i.e. ee$batch$Task$start()
) to
move the ee$Image
from Earth Engine to the intermediate container
specified in the argument via
.
2. If the argument lazy
is TRUE, the task will not be
monitored. This is useful to lunch several tasks simultaneously and
calls them later using ee_utils_future_value
or
future::value
. At the end of this step,
the ee$Image
is stored on the path specified in the argument
dsn
.
3. Finally, if the argument add_metadata
is TRUE, a list
with the following elements is added to the stars-proxy object.
if via is "drive":
ee_id: Name of the Earth Engine task.
drive_name: Name of the Image in Google Drive.
drive_id: Id of the Image in Google Drive.
drive_download_link: Download link to the image.
if via is "gcs":
ee_id: Name of the Earth Engine task.
gcs_name: Name of the Image in Google Cloud Storage.
gcs_bucket: Name of the bucket.
gcs_fileFormat: Format of the image.
gcs_public_link: Download link to the image.
gcs_URI: gs:// link to the image.
Run attr(stars, "metadata")
to get the list.
For getting more information about exporting data from Earth Engine, take a look at the Google Earth Engine Guide - Export data.
A stars-proxy object
Other image download functions:
ee_as_raster()
,
ee_as_rast()
,
ee_as_thumbnail()
,
ee_imagecollection_to_local()
## Not run: library(rgee) ee_Initialize(drive = TRUE, gcs = TRUE) ee_user_info() # Define an image. img <- ee$Image("LANDSAT/LC08/C01/T1_SR/LC08_038029_20180810")$ select(c("B4", "B3", "B2"))$ divide(10000) # OPTIONAL display it using Map Map$centerObject(eeObject = img) Map$addLayer(eeObject = img, visParams = list(max = 0.4,gamma=0.1)) # Define an area of interest. geometry <- ee$Geometry$Rectangle( coords = c(-110.8, 44.6, -110.6, 44.7), proj = "EPSG:4326", geodesic = FALSE ) ## getDownloadURL - Method 01 (for small images) img_02 <- ee_as_stars( image = img, region = geometry, scale = 10 ) ## drive - Method 02 # Simple img_02 <- ee_as_stars( image = img, region = geometry, via = "drive" ) # Lazy img_02 <- ee_as_stars( image = img, region = geometry, via = "drive", lazy = TRUE ) img_02_result <- img_02 %>% ee_utils_future_value() attr(img_02_result, "metadata") # metadata ## gcs - Method 03 # Simple img_03 <- ee_as_stars( image = img, region = geometry, container = "rgee_dev", via = "gcs" ) # Lazy img_03 <- ee_as_stars( image = img, region = geometry, container = "rgee_dev", lazy = TRUE, via = "gcs" ) img_03_result <- img_03 %>% ee_utils_future_value() attr(img_03_result, "metadata") # metadata # OPTIONAL: clean containers # ee_clean_container(name = "rgee_backup", type = "drive") # ee_clean_container(name = "rgee_dev", type = "gcs") ## End(Not run)
## Not run: library(rgee) ee_Initialize(drive = TRUE, gcs = TRUE) ee_user_info() # Define an image. img <- ee$Image("LANDSAT/LC08/C01/T1_SR/LC08_038029_20180810")$ select(c("B4", "B3", "B2"))$ divide(10000) # OPTIONAL display it using Map Map$centerObject(eeObject = img) Map$addLayer(eeObject = img, visParams = list(max = 0.4,gamma=0.1)) # Define an area of interest. geometry <- ee$Geometry$Rectangle( coords = c(-110.8, 44.6, -110.6, 44.7), proj = "EPSG:4326", geodesic = FALSE ) ## getDownloadURL - Method 01 (for small images) img_02 <- ee_as_stars( image = img, region = geometry, scale = 10 ) ## drive - Method 02 # Simple img_02 <- ee_as_stars( image = img, region = geometry, via = "drive" ) # Lazy img_02 <- ee_as_stars( image = img, region = geometry, via = "drive", lazy = TRUE ) img_02_result <- img_02 %>% ee_utils_future_value() attr(img_02_result, "metadata") # metadata ## gcs - Method 03 # Simple img_03 <- ee_as_stars( image = img, region = geometry, container = "rgee_dev", via = "gcs" ) # Lazy img_03 <- ee_as_stars( image = img, region = geometry, container = "rgee_dev", lazy = TRUE, via = "gcs" ) img_03_result <- img_03 %>% ee_utils_future_value() attr(img_03_result, "metadata") # metadata # OPTIONAL: clean containers # ee_clean_container(name = "rgee_backup", type = "drive") # ee_clean_container(name = "rgee_dev", type = "gcs") ## End(Not run)
Wrapper function around ee$Image$getThumbURL
to create a stars or
RasterLayer R object from a
EE thumbnail image.
ee_as_thumbnail( image, region, dimensions, vizparams = NULL, raster = FALSE, quiet = FALSE )
ee_as_thumbnail( image, region, dimensions, vizparams = NULL, raster = FALSE, quiet = FALSE )
image |
EE Image object to be converted into a stars object. |
region |
EE Geometry Rectangle (ee$Geometry$Rectangle) specifies the region to be exported. The CRS must match the 'x' argument; otherwise, it will be forced. |
dimensions |
Numeric vector of length 2 that specifies the dimensions of the thumbnail image in pixels. If only one integer is provided, it determines the size of the larger dimension of the image and scales the other dimension proportionally. Defaults to 512 pixels for the larger image aspect dimension. |
vizparams |
A list containing the visualization parameters.See details. |
raster |
Logical. Should the thumbnail image be saved as a RasterStack object? |
quiet |
logical; suppress info messages. |
vizparams
set up the details of the thumbnail image. With
ee_as_thumbnail
allows exporting only one-band (G) or three-band
(RGB) images. Several parameters can be passed on to control color,
intensity, the maximum and minimum values, etc. The table below provides
all the parameters that admit ee_as_thumbnail
.
Parameter | Description | Type |
bands | Comma-delimited list of three band (RGB) | list |
min | Value(s) to map to 0 | number or list of three numbers, one for each band |
max | Value(s) to map to 1 | number or list of three numbers, one for each band |
gain | Value(s) by which to multiply each pixel value | number or list of three numbers, one for each band |
bias | Value(s) to add to each Digital Number value | number or list of three numbers, one for each band |
gamma | Gamma correction factor(s) | number or list of three numbers, one for each band |
palette | List of CSS-style color strings (single-band only) | comma-separated list of hex strings |
opacity | The opacity of the layer (from 0 to 1) | number |
An stars or Raster object depending on the raster
argument.
Other image download functions:
ee_as_raster()
,
ee_as_rast()
,
ee_as_stars()
,
ee_imagecollection_to_local()
## Not run: library(raster) library(stars) library(rgee) ee_Initialize() nc <- st_read(system.file("shp/arequipa.shp", package = "rgee")) dem_palette <- c( "#008435", "#1CAC17", "#48D00C", "#B3E34B", "#F4E467", "#F4C84E", "#D59F3C", "#A36D2D", "#C6A889", "#FFFFFF" ) ## DEM data -SRTM v4.0 image <- ee$Image("CGIAR/SRTM90_V4") world_region <- ee$Geometry$Rectangle( coords = c(-180,-60,180,60), proj = "EPSG:4326", geodesic = FALSE ) ## world - elevation world_dem <- ee_as_thumbnail( image = image, region = world_region, dimensions = 1024, vizparams = list(min = 0, max = 5000) ) world_dem[world_dem <= 0] <- NA world_dem <- world_dem * 5000 plot( x = world_dem, col = dem_palette, breaks = "equal", reset = FALSE, main = "SRTM - World" ) ## Arequipa-Peru arequipa_region <- nc %>% st_bbox() %>% st_as_sfc() %>% sf_as_ee() arequipa_dem <- ee_as_thumbnail( image = image, region = arequipa_region$buffer(1000)$bounds(), dimensions = 512, vizparams = list(min = 0, max = 5000) ) arequipa_dem <- arequipa_dem * 5000 st_crs(arequipa_dem) <- 4326 plot( x = arequipa_dem[nc], col = dem_palette, breaks = "equal", reset = FALSE, main = "SRTM - Arequipa" ) suppressWarnings(plot( x = nc, col = NA, border = "black", add = TRUE, lwd = 1.5 )) dev.off() ## LANDSAT 8 img <- ee$Image("LANDSAT/LC08/C01/T1_SR/LC08_038029_20180810")$ select(c("B4", "B3", "B2")) Map$centerObject(img) Map$addLayer(img, list(min = 0, max = 5000, gamma = 1.5)) ## Teton Wilderness l8_img <- ee_as_thumbnail( image = img, region = img$geometry()$bounds(), dimensions = 1024, vizparams = list(min = 0, max = 5000, gamma = 1.5), raster = TRUE ) crs(l8_img) <- "+proj=longlat +datum=WGS84 +no_defs" plotRGB(l8_img, stretch = "lin") ## End(Not run)
## Not run: library(raster) library(stars) library(rgee) ee_Initialize() nc <- st_read(system.file("shp/arequipa.shp", package = "rgee")) dem_palette <- c( "#008435", "#1CAC17", "#48D00C", "#B3E34B", "#F4E467", "#F4C84E", "#D59F3C", "#A36D2D", "#C6A889", "#FFFFFF" ) ## DEM data -SRTM v4.0 image <- ee$Image("CGIAR/SRTM90_V4") world_region <- ee$Geometry$Rectangle( coords = c(-180,-60,180,60), proj = "EPSG:4326", geodesic = FALSE ) ## world - elevation world_dem <- ee_as_thumbnail( image = image, region = world_region, dimensions = 1024, vizparams = list(min = 0, max = 5000) ) world_dem[world_dem <= 0] <- NA world_dem <- world_dem * 5000 plot( x = world_dem, col = dem_palette, breaks = "equal", reset = FALSE, main = "SRTM - World" ) ## Arequipa-Peru arequipa_region <- nc %>% st_bbox() %>% st_as_sfc() %>% sf_as_ee() arequipa_dem <- ee_as_thumbnail( image = image, region = arequipa_region$buffer(1000)$bounds(), dimensions = 512, vizparams = list(min = 0, max = 5000) ) arequipa_dem <- arequipa_dem * 5000 st_crs(arequipa_dem) <- 4326 plot( x = arequipa_dem[nc], col = dem_palette, breaks = "equal", reset = FALSE, main = "SRTM - Arequipa" ) suppressWarnings(plot( x = nc, col = NA, border = "black", add = TRUE, lwd = 1.5 )) dev.off() ## LANDSAT 8 img <- ee$Image("LANDSAT/LC08/C01/T1_SR/LC08_038029_20180810")$ select(c("B4", "B3", "B2")) Map$centerObject(img) Map$addLayer(img, list(min = 0, max = 5000, gamma = 1.5)) ## Teton Wilderness l8_img <- ee_as_thumbnail( image = img, region = img$geometry()$bounds(), dimensions = 1024, vizparams = list(min = 0, max = 5000, gamma = 1.5), raster = TRUE ) crs(l8_img) <- "+proj=longlat +datum=WGS84 +no_defs" plotRGB(l8_img, stretch = "lin") ## End(Not run)
Prompts the user to authorize access to Earth Engine via OAuth2.
ee_Authenticate( user = NULL, earthengine = TRUE, drive = FALSE, gcs = FALSE, authorization_code = NULL, code_verifier = NULL, auth_mode = "notebook", scopes = NULL, quiet = FALSE, verbose = TRUE )
ee_Authenticate( user = NULL, earthengine = TRUE, drive = FALSE, gcs = FALSE, authorization_code = NULL, code_verifier = NULL, auth_mode = "notebook", scopes = NULL, quiet = FALSE, verbose = TRUE )
user |
Character (optional). If is a character, the credentials are saved in the dirpath: ~/.config/earthengine/$user. If is NULL, the credentials are stored in ~/.config/earthengine. |
earthengine |
Logical (optional). If TRUE, the EarthEngine credential
is cached in the path |
drive |
Logical (optional). If TRUE, the drive credential
is cached in the path |
gcs |
Logical (optional). If TRUE, the Google Cloud Storage
credential is cached in the path |
authorization_code |
An optional authorization code. |
code_verifier |
PKCE verifier to prevent auth code stealing. |
auth_mode |
The authentication mode. One of:
|
scopes |
List of scopes to use for authentication. Defaults to 'https://www.googleapis.com/auth/earthengine' or 'https://www.googleapis.com/auth/devstorage.full_control' |
quiet |
If TRUE, do not require interactive prompts and force –no-browser mode for gcloud. |
verbose |
Logical. Suppress info messages. |
## Not run: library(rgee) # Simple init - Load just the Earth Engine credential ee_Authenticate() # At Server side ee_Authenticate(quiet=TRUE) ## End(Not run)
## Not run: library(rgee) # Simple init - Load just the Earth Engine credential ee_Authenticate() # At Server side ee_Authenticate(quiet=TRUE) ## End(Not run)
R function for checking Google credentials (Google Earth Engine, Google Drive and Google Cloud Storage), Python environment and Third-Party Python Packages used by rgee. Besides, from v0.1.304, earthengine-api (Python side) requires gcloud to manage authentication (see ee_Authenticate).
ee_check(user = NULL, quiet = FALSE) ee_check_python(quiet = FALSE) ee_check_python_packages(quiet = FALSE) ee_check_credentials(quiet = FALSE) ee_check_gcloud()
ee_check(user = NULL, quiet = FALSE) ee_check_python(quiet = FALSE) ee_check_python_packages(quiet = FALSE) ee_check_credentials(quiet = FALSE) ee_check_gcloud()
user |
Character.User to check credentials. If this parameter is not defined, then the check for credentials will be skipped. |
quiet |
Logical. Suppress info message |
No return value, called for checking non-R rgee dependencies.
## Not run: library(rgee) ee_check_python() ee_check_python_packages() ee_check_credentials() ee_check_gcloud() ee_check() # put them all together ## Install gcloud in Unix systems ## 1. Download/Install gcloud # system("curl -sSL https://sdk.cloud.google.com | bash") ## 2. Set the PATH ENV # sdkpath <- sprintf("%s/google-cloud-sdk/bin/", Sys.getenv("HOME")) # Sys.setenv(PATH=sprintf("%s:%s", Sys.getenv("PATH"), sdkpath)) ## End(Not run)
## Not run: library(rgee) ee_check_python() ee_check_python_packages() ee_check_credentials() ee_check_gcloud() ee_check() # put them all together ## Install gcloud in Unix systems ## 1. Download/Install gcloud # system("curl -sSL https://sdk.cloud.google.com | bash") ## 2. Set the PATH ENV # sdkpath <- sprintf("%s/google-cloud-sdk/bin/", Sys.getenv("HOME")) # Sys.setenv(PATH=sprintf("%s:%s", Sys.getenv("PATH"), sdkpath)) ## End(Not run)
Delete all files from a folder (Google Drive) or a bucket
(Google Cloud Storage). Caution: this action will permanently delete any backup
files that were generated using ee_as_stars
and ee_as_sf
.
ee_clean_container(name = "rgee_backup", type = "drive", quiet = FALSE)
ee_clean_container(name = "rgee_backup", type = "drive", quiet = FALSE)
name |
Character. Name of the folder (Google Drive) or bucket (GCS) to delete all files. |
type |
Character. Name of the file storage web service. 'drive' and 'gcs' are supported. |
quiet |
logical. Suppress info message |
No return value, called for cleaning Google Drive or Google Cloud Storage container.
Other ee_clean functions:
ee_clean_pyenv()
,
ee_clean_user_credentials()
Remove rgee system variables from .Renviron
ee_clean_pyenv(Renviron = "global")
ee_clean_pyenv(Renviron = "global")
Renviron |
Character. If it is "global" the environment variables in the .Renviron located in the Sys.getenv("HOME") folder will be deleted. On the other hand, if it is "local" the environment variables in the .Renviron on the working directory (getwd()) will be deleted. Finally, users can also set a specific path (see examples). |
No return value, called for cleaning environmental variables in their system.
Other ee_clean functions:
ee_clean_container()
,
ee_clean_user_credentials()
Clean credentials for a specific user
ee_clean_user_credentials( user = NULL, earthengine = TRUE, drive = TRUE, gcs = FALSE )
ee_clean_user_credentials( user = NULL, earthengine = TRUE, drive = TRUE, gcs = FALSE )
user |
Character (optional, e.g. |
earthengine |
Logical. Earthengine credential. |
drive |
Logical. Google Drive credential. |
gcs |
Logical. Google Cloud Storage credential. |
No return value, called for cleaning the path ~/.config/earthengine/
Other ee_clean functions:
ee_clean_container()
,
ee_clean_pyenv()
## Not run: library(rgee) # Delete caducated credentials for a specific user ee_clean_user_credentials(earthengine=TRUE, drive=TRUE) ee_users() ## End(Not run)
## Not run: library(rgee) # Delete caducated credentials for a specific user ee_clean_user_credentials(earthengine=TRUE, drive=TRUE) ee_users() ## End(Not run)
Move results of an EE task saved in Google Drive to a local directory.
ee_drive_to_local( task, dsn, overwrite = TRUE, consider = TRUE, public = FALSE, metadata = FALSE, quiet = FALSE )
ee_drive_to_local( task, dsn, overwrite = TRUE, consider = TRUE, public = FALSE, metadata = FALSE, quiet = FALSE )
task |
A generated list obtained after completing an Earth Engine task. See details. |
dsn |
Character. Output filename. If missing, a temporary file will be assigned. |
overwrite |
A boolean argument that indicates whether filename should be overwritten. By default TRUE. |
consider |
Interactive. See details. |
public |
Logical. If TRUE, a public link to the Google Drive resource is created. |
metadata |
Logical. If TRUE, the metadata related to the Google Drive resource will be exported. See details. |
quiet |
Logical. Suppress info message. |
The task argument requires a status of "COMPLETED" because
the parameters required to identify EE items in Google Drive
are retrieved from ee$batch$Export$*$toDrive(...)$start()$status()
.
Due to the fact that Google Drive allows users to create files with the
same name, the consider
argument is required. It use an interactive
R session by default to assist users in identifying the specific files
they wish to download. Additionally, "last" and "all" settings are
provided. "last" will only download the most recently saved file in
Google Drive, whereas "all" will download all files with the same name.
Finally, if the argument metadata
is TRUE, a list containing the
following elements is exported and appended to the output filename (dsn):
ee_id: Name of the Earth Engine task.
drive_name: Name of the Table in Google Drive.
drive_id: Id of the Table in Google Drive.
drive_download_link: Download link to the table.
If metadata
is FALSE, will return the filename of the Google
Drive resource on their system. Otherwise, a list with two elements
(dns
and metadata
) is returned.
Other generic download functions:
ee_gcs_to_local()
## Not run: library(rgee) library(stars) library(sf) ee_users() ee_Initialize(drive = TRUE) # Define study area (local -> earth engine) # Communal Reserve Amarakaeri - Peru rlist <- list(xmin = -71.13, xmax = -70.95,ymin = -12.89, ymax = -12.73) ROI <- c(rlist$xmin, rlist$ymin, rlist$xmax, rlist$ymin, rlist$xmax, rlist$ymax, rlist$xmin, rlist$ymax, rlist$xmin, rlist$ymin) ee_ROI <- matrix(ROI, ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() %>% st_sfc() %>% st_set_crs(4326) %>% sf_as_ee() # Get the mean annual NDVI for 2011 cloudMaskL457 <- function(image) { qa <- image$select("pixel_qa") cloud <- qa$bitwiseAnd(32L)$ And(qa$bitwiseAnd(128L))$ Or(qa$bitwiseAnd(8L)) mask2 <- image$mask()$reduce(ee$Reducer$min()) image <- image$updateMask(cloud$Not())$updateMask(mask2) image$normalizedDifference(list("B4", "B3")) } ic_l5 <- ee$ImageCollection("LANDSAT/LT05/C01/T1_SR")$ filterBounds(ee$FeatureCollection(ee_ROI))$ filterDate("2011-01-01", "2011-12-31")$ map(cloudMaskL457) # Create simple composite mean_l5 <- ic_l5$mean()$rename("NDVI") mean_l5 <- mean_l5$reproject(crs = "EPSG:4326", scale = 500) mean_l5_Amarakaeri <- mean_l5$clip(ee_ROI) # Move results from Earth Engine to Drive task_img <- ee_image_to_drive( image = mean_l5_Amarakaeri, folder = "Amarakaeri", fileFormat = "GEO_TIFF", region = ee_ROI, fileNamePrefix = "my_image_demo" ) task_img$start() ee_monitoring(task_img) # Move results from Drive to local img <- ee_drive_to_local(task = task_img) ## End(Not run)
## Not run: library(rgee) library(stars) library(sf) ee_users() ee_Initialize(drive = TRUE) # Define study area (local -> earth engine) # Communal Reserve Amarakaeri - Peru rlist <- list(xmin = -71.13, xmax = -70.95,ymin = -12.89, ymax = -12.73) ROI <- c(rlist$xmin, rlist$ymin, rlist$xmax, rlist$ymin, rlist$xmax, rlist$ymax, rlist$xmin, rlist$ymax, rlist$xmin, rlist$ymin) ee_ROI <- matrix(ROI, ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() %>% st_sfc() %>% st_set_crs(4326) %>% sf_as_ee() # Get the mean annual NDVI for 2011 cloudMaskL457 <- function(image) { qa <- image$select("pixel_qa") cloud <- qa$bitwiseAnd(32L)$ And(qa$bitwiseAnd(128L))$ Or(qa$bitwiseAnd(8L)) mask2 <- image$mask()$reduce(ee$Reducer$min()) image <- image$updateMask(cloud$Not())$updateMask(mask2) image$normalizedDifference(list("B4", "B3")) } ic_l5 <- ee$ImageCollection("LANDSAT/LT05/C01/T1_SR")$ filterBounds(ee$FeatureCollection(ee_ROI))$ filterDate("2011-01-01", "2011-12-31")$ map(cloudMaskL457) # Create simple composite mean_l5 <- ic_l5$mean()$rename("NDVI") mean_l5 <- mean_l5$reproject(crs = "EPSG:4326", scale = 500) mean_l5_Amarakaeri <- mean_l5$clip(ee_ROI) # Move results from Earth Engine to Drive task_img <- ee_image_to_drive( image = mean_l5_Amarakaeri, folder = "Amarakaeri", fileFormat = "GEO_TIFF", region = ee_ROI, fileNamePrefix = "my_image_demo" ) task_img$start() ee_monitoring(task_img) # Move results from Drive to local img <- ee_drive_to_local(task = task_img) ## End(Not run)
Extract values from an ee$Image
based on the locations of a geometry object.
Users can utilize ee$Geometry$*
, ee$Feature
, ee$FeatureCollection
,
sf or sfc object for spatial filter.
This function emulates the functionality of the existing extract method.
ee_extract( x, y, fun = ee$Reducer$mean(), scale = NULL, sf = FALSE, via = "getInfo", container = "rgee_backup", lazy = FALSE, quiet = FALSE, ... )
ee_extract( x, y, fun = ee$Reducer$mean(), scale = NULL, sf = FALSE, via = "getInfo", container = "rgee_backup", lazy = FALSE, quiet = FALSE, ... )
x |
ee$Image. |
y |
ee$Geometry$*, ee$Feature, ee$FeatureCollection, sfc or sf objects. |
fun |
ee$Reducer object. Function to summarize the values. The function must take a single numeric value as an argument and return a single value. See details. |
scale |
A nominal scale given in meters of the Image projection to work in. By default 1000. |
sf |
Logical. Should the function return an sf object? |
via |
Character. Method for exporting the image. Three methods are available: "getInfo", "drive", "gcs". |
container |
Character. Name of the folder ('drive') or bucket ('gcs')
to export the image into (ignore if |
lazy |
Logical. If TRUE, a |
quiet |
Logical. Suppress info message. |
... |
ee$Image$reduceRegions additional parameters. See
|
The reducer functions that return one value are:
allNonZero: Returns a Reducer that returns 1 if all of its
inputs are non-zero, 0 otherwise.
anyNonZero: Returns a Reducer that returns 1 if any of its
inputs are non-zero, 0 otherwise.
bitwiseAnd: Returns a Reducer that computes the bitwise-and summation of its inputs.
bitwiseOr: Returns a Reducer that computes the bitwise-or summation of its inputs.
count: Returns a Reducer that computes the number of non-null inputs.
first: Returns a Reducer that returns the first of its inputs.
firstNonNull: Returns a Reducer that returns the first of its non-null inputs.
kurtosis: Returns a Reducer that Computes the kurtosis of its inputs.
last: Returns a Reducer that returns the last of its inputs.
lastNonNull: Returns a Reducer that returns the last of its non-null inputs.
max: Creates a reducer that outputs the maximum value of its (first) input. If numInputs is greater than one, also outputs the corresponding values of the additional inputs.
mean: Returns a Reducer that computes the (weighted) arithmetic mean of its inputs.
median: Create a reducer that will compute the median of the inputs. For small numbers of inputs (up to maxRaw) the median will be computed directly; for larger numbers of inputs the median will be derived from a histogram.
min: Creates a reducer that outputs the minimum value of its (first) input. If numInputs is greater than one, also outputs additional inputs.
mode: Create a reducer that will compute the mode of the inputs. For small numbers of inputs (up to maxRaw) the mode will be computed directly; for larger numbers of inputs the mode will be derived from a histogram.
product: Returns a Reducer that computes the product of its inputs.
sampleStdDev: Returns a Reducer that computes the sample standard deviation of its inputs.
sampleVariance: Returns a Reducer that computes the sample variance of its inputs.
stdDev: Returns a Reducer that computes the standard deviation of its inputs.
sum: Returns a Reducer that computes the (weighted) sum of its inputs.
variance: Returns a Reducer that computes the variance of its inputs.
A data.frame or an sf object depending on the sf argument.
Column names are extracted from band names. Use ee$Image$rename
to
rename the bands of an ee$Image
. See ee_help(ee$Image$rename)
.
## Not run: library(rgee) library(sf) ee_Initialize(gcs = TRUE, drive = TRUE) # Define a Image or ImageCollection: Terraclimate terraclimate <- ee$ImageCollection("IDAHO_EPSCOR/TERRACLIMATE") %>% ee$ImageCollection$filterDate("2001-01-01", "2002-01-01") %>% ee$ImageCollection$map( function(x) { date <- ee$Date(x$get("system:time_start"))$format('YYYY_MM_dd') name <- ee$String$cat("Terraclimate_pp_", date) x$select("pr")$rename(name) } ) # Define a geometry nc <- st_read( dsn = system.file("shape/nc.shp", package = "sf"), stringsAsFactors = FALSE, quiet = TRUE ) #Extract values - getInfo ee_nc_rain <- ee_extract( x = terraclimate, y = nc["NAME"], scale = 250, fun = ee$Reducer$mean(), sf = TRUE ) # Extract values - drive (lazy = TRUE) ee_nc_rain <- ee_extract( x = terraclimate, y = nc["NAME"], scale = 250, fun = ee$Reducer$mean(), via = "drive", lazy = TRUE, sf = TRUE ) ee_nc_rain <- ee_nc_rain %>% ee_utils_future_value() # Extract values - gcs (lazy = FALSE) ee_nc_rain <- ee_extract( x = terraclimate, y = nc["NAME"], scale = 250, fun = ee$Reducer$mean(), via = "gcs", container = "rgee_dev", sf = TRUE ) # Spatial plot plot( ee_nc_rain["X200101_Terraclimate_pp_2001_01_01"], main = "2001 Jan Precipitation - Terraclimate", reset = FALSE ) ## End(Not run)
## Not run: library(rgee) library(sf) ee_Initialize(gcs = TRUE, drive = TRUE) # Define a Image or ImageCollection: Terraclimate terraclimate <- ee$ImageCollection("IDAHO_EPSCOR/TERRACLIMATE") %>% ee$ImageCollection$filterDate("2001-01-01", "2002-01-01") %>% ee$ImageCollection$map( function(x) { date <- ee$Date(x$get("system:time_start"))$format('YYYY_MM_dd') name <- ee$String$cat("Terraclimate_pp_", date) x$select("pr")$rename(name) } ) # Define a geometry nc <- st_read( dsn = system.file("shape/nc.shp", package = "sf"), stringsAsFactors = FALSE, quiet = TRUE ) #Extract values - getInfo ee_nc_rain <- ee_extract( x = terraclimate, y = nc["NAME"], scale = 250, fun = ee$Reducer$mean(), sf = TRUE ) # Extract values - drive (lazy = TRUE) ee_nc_rain <- ee_extract( x = terraclimate, y = nc["NAME"], scale = 250, fun = ee$Reducer$mean(), via = "drive", lazy = TRUE, sf = TRUE ) ee_nc_rain <- ee_nc_rain %>% ee_utils_future_value() # Extract values - gcs (lazy = FALSE) ee_nc_rain <- ee_extract( x = terraclimate, y = nc["NAME"], scale = 250, fun = ee$Reducer$mean(), via = "gcs", container = "rgee_dev", sf = TRUE ) # Spatial plot plot( ee_nc_rain["X200101_Terraclimate_pp_2001_01_01"], main = "2001 Jan Precipitation - Terraclimate", reset = FALSE ) ## End(Not run)
Move results of an EE task saved in Google Cloud Storage to a local directory.
ee_gcs_to_local( task, dsn, public = FALSE, metadata = FALSE, overwrite = TRUE, quiet = FALSE )
ee_gcs_to_local( task, dsn, public = FALSE, metadata = FALSE, overwrite = TRUE, quiet = FALSE )
task |
List generated after the EE task is correctly finished. See details. |
dsn |
Character. Output filename. If missing, a temporary
file (i.e. |
public |
Logical. If TRUE, a public link to Google Cloud Storage resource is created. "Public Access Prevention" may need to be removed. In addition, the bucket access control configuration must be "fine-grained". See GCS public files documentation for more details. |
metadata |
Logical. If TRUE, export the metadata related to the Google Cloud Storage resource. See details. |
overwrite |
A boolean argument that indicates whether "filename" should be overwritten. By default TRUE. |
quiet |
Logical. Suppress info message |
The task argument requires a status of "COMPLETED" because
the parameters required to identify EE items in Google Drive
are retrieved from ee$batch$Export$*$toCloudStorage(...)$start()$status()
.
If the argument metadata
is TRUE, a list containing the following
elements is exported and appended to the output filename (dsn):
ee_id: Name of the Earth Engine task.
gcs_name: Name of the Table in Google Cloud Storage.
gcs_bucket: Name of the bucket.
gcs_fileFormat: Format of the table.
gcs_public_link: Download link to the table.
gcs_URI: gs:// link to the table.
If metadata
is FALSE, will return the filename of the Google
Cloud Storage resource on their system. Otherwise, a list with two elements
(dns
and metadata
) is returned.
Other generic download functions:
ee_drive_to_local()
## Not run: library(rgee) library(stars) library(sf) ee_users() ee_Initialize(gcs = TRUE) # Define study area (local -> earth engine) # Communal Reserve Amarakaeri - Peru rlist <- list(xmin = -71.13, xmax = -70.95,ymin = -12.89, ymax = -12.73) ROI <- c(rlist$xmin, rlist$ymin, rlist$xmax, rlist$ymin, rlist$xmax, rlist$ymax, rlist$xmin, rlist$ymax, rlist$xmin, rlist$ymin) ee_ROI <- matrix(ROI, ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() %>% st_sfc() %>% st_set_crs(4326) %>% sf_as_ee() # Get the mean annual NDVI for 2011 cloudMaskL457 <- function(image) { qa <- image$select("pixel_qa") cloud <- qa$bitwiseAnd(32L)$ And(qa$bitwiseAnd(128L))$ Or(qa$bitwiseAnd(8L)) mask2 <- image$mask()$reduce(ee$Reducer$min()) image <- image$updateMask(cloud$Not())$updateMask(mask2) image$normalizedDifference(list("B4", "B3")) } ic_l5 <- ee$ImageCollection("LANDSAT/LT05/C01/T1_SR")$ filterBounds(ee$FeatureCollection(ee_ROI))$ filterDate("2011-01-01", "2011-12-31")$ map(cloudMaskL457) # Create simple composite mean_l5 <- ic_l5$mean()$rename("NDVI") mean_l5 <- mean_l5$reproject(crs = "EPSG:4326", scale = 500) mean_l5_Amarakaeri <- mean_l5$clip(ee_ROI) # Move results from Earth Engine to Drive task_img <- ee_image_to_gcs( image = mean_l5_Amarakaeri, bucket = "rgee_dev", fileFormat = "GEO_TIFF", region = ee_ROI, fileNamePrefix = "my_image_demo" ) task_img$start() ee_monitoring(task_img) # Move results from Drive to local img <- ee_gcs_to_local(task = task_img) ## End(Not run)
## Not run: library(rgee) library(stars) library(sf) ee_users() ee_Initialize(gcs = TRUE) # Define study area (local -> earth engine) # Communal Reserve Amarakaeri - Peru rlist <- list(xmin = -71.13, xmax = -70.95,ymin = -12.89, ymax = -12.73) ROI <- c(rlist$xmin, rlist$ymin, rlist$xmax, rlist$ymin, rlist$xmax, rlist$ymax, rlist$xmin, rlist$ymax, rlist$xmin, rlist$ymin) ee_ROI <- matrix(ROI, ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() %>% st_sfc() %>% st_set_crs(4326) %>% sf_as_ee() # Get the mean annual NDVI for 2011 cloudMaskL457 <- function(image) { qa <- image$select("pixel_qa") cloud <- qa$bitwiseAnd(32L)$ And(qa$bitwiseAnd(128L))$ Or(qa$bitwiseAnd(8L)) mask2 <- image$mask()$reduce(ee$Reducer$min()) image <- image$updateMask(cloud$Not())$updateMask(mask2) image$normalizedDifference(list("B4", "B3")) } ic_l5 <- ee$ImageCollection("LANDSAT/LT05/C01/T1_SR")$ filterBounds(ee$FeatureCollection(ee_ROI))$ filterDate("2011-01-01", "2011-12-31")$ map(cloudMaskL457) # Create simple composite mean_l5 <- ic_l5$mean()$rename("NDVI") mean_l5 <- mean_l5$reproject(crs = "EPSG:4326", scale = 500) mean_l5_Amarakaeri <- mean_l5$clip(ee_ROI) # Move results from Earth Engine to Drive task_img <- ee_image_to_gcs( image = mean_l5_Amarakaeri, bucket = "rgee_dev", fileFormat = "GEO_TIFF", region = ee_ROI, fileNamePrefix = "my_image_demo" ) task_img$start() ee_monitoring(task_img) # Move results from Drive to local img <- ee_gcs_to_local(task = task_img) ## End(Not run)
Get the Asset home name
ee_get_assethome()
ee_get_assethome()
Character. The name of the Earth Engine Asset home (e.g. users/datacolecfbf)
Other path utils:
ee_get_earthengine_path()
## Not run: library(rgee) ee_Initialize() ee_get_assethome() ## End(Not run)
## Not run: library(rgee) ee_Initialize() ee_get_assethome() ## End(Not run)
Get the date of a EE ImageCollection
ee_get_date_ic(x, time_end = FALSE)
ee_get_date_ic(x, time_end = FALSE)
x |
ee$ImageCollection object |
time_end |
Logical. If TRUE, the |
system:time_start
Sets the start period of data acquisition while
system:time_end
does the same for the end period. See the
Earth Engine glossary
for getting more information.
A data.frame with the columns: id
(ID of the image),
time_start
, and time_end
(only if the argument time_end
is
set as TRUE). The number of rows depends on the number of images
(ee$ImageCollection$size
).
Other date functions:
ee_get_date_img()
,
eedate_to_rdate()
,
rdate_to_eedate()
## Not run: library(rgee) library(sf) ee_Initialize() nc <- st_read(system.file("shape/nc.shp", package = "sf")) %>% st_transform(4326) %>% sf_as_ee() ee_s2 <- ee$ImageCollection("COPERNICUS/S2")$ filterDate("2016-01-01", "2016-01-31")$ filterBounds(nc) ee_get_date_ic(ee_s2) ## End(Not run)
## Not run: library(rgee) library(sf) ee_Initialize() nc <- st_read(system.file("shape/nc.shp", package = "sf")) %>% st_transform(4326) %>% sf_as_ee() ee_s2 <- ee$ImageCollection("COPERNICUS/S2")$ filterDate("2016-01-01", "2016-01-31")$ filterBounds(nc) ee_get_date_ic(ee_s2) ## End(Not run)
Get the date of a EE Image
ee_get_date_img(x, time_end = FALSE)
ee_get_date_img(x, time_end = FALSE)
x |
ee$Image or ee$ImageCollection object |
time_end |
Logical. If TRUE, the |
system:time_start
sets the start period of data acquisition while
system:time_end
does the same for the end period. See the
Earth Engine glossary
for getting more information.
An List object with the elements: id, time_start and time_end
(only if the time_end
argument is TRUE).
Other date functions:
ee_get_date_ic()
,
eedate_to_rdate()
,
rdate_to_eedate()
## Not run: library(rgee) ee_Initialize() l8 <- ee$Image('LANDSAT/LC08/C01/T1_TOA/LC08_044034_20140318') ee_get_date_img(l8) srtm <- ee$Image('CGIAR/SRTM90_V4') ee_get_date_img(srtm, time_end = TRUE) ## End(Not run)
## Not run: library(rgee) ee_Initialize() l8 <- ee$Image('LANDSAT/LC08/C01/T1_TOA/LC08_044034_20140318') ee_get_date_img(l8) srtm <- ee$Image('CGIAR/SRTM90_V4') ee_get_date_img(srtm, time_end = TRUE) ## End(Not run)
Get the path where the credentials are stored
ee_get_earthengine_path()
ee_get_earthengine_path()
A character that represents the path credential of a specific user
Other path utils:
ee_get_assethome()
Documentation for Earth Engine Objects
ee_help(eeobject, browser = FALSE)
ee_help(eeobject, browser = FALSE)
eeobject |
Earth Engine Object to print documentation. |
browser |
Logical. Display documentation in the browser. |
No return value, called for displaying Earth Engine documentation.
Other helper functions:
ee_monitoring()
,
ee_print()
## Not run: library(rgee) ee_Initialize() ee$Image()$geometry()$centroid %>% ee_help() ee$Image()$geometry() %>% ee_help() ee$Geometry$Rectangle(c(-110.8, 44.6, -110.6, 44.7)) %>% ee_help() ee$Image %>% ee_help() ee$Image %>% ee_help(browser = TRUE) ## End(Not run)
## Not run: library(rgee) ee_Initialize() ee$Image()$geometry()$centroid %>% ee_help() ee$Image()$geometry() %>% ee_help() ee$Geometry$Rectangle(c(-110.8, 44.6, -110.6, 44.7)) %>% ee_help() ee$Image %>% ee_help() ee$Image %>% ee_help(browser = TRUE) ## End(Not run)
Get the approximate number of rows, cols, and size of a single-band Earth Engine Image.
ee_image_info( image, band_metadata = NULL, getsize = TRUE, compression_ratio = 20, quiet = FALSE )
ee_image_info( image, band_metadata = NULL, getsize = TRUE, compression_ratio = 20, quiet = FALSE )
image |
Single-band EE Image object. |
band_metadata |
A list with image properties. If NULL it will be automatically generated. |
getsize |
Logical. If TRUE, the function will estimate the size of the object |
compression_ratio |
Numeric. Measurement of the relative data size
reduction produced by a data compression algorithm (ignored if
|
quiet |
Logical. Suppress info message |
A list containing information about the number of rows (nrow), number of columns (ncol), total number of pixels (total_pixel), and image size (image_size).
## Not run: library(rgee) ee_Initialize() # World SRTM srtm <- ee$Image("CGIAR/SRTM90_V4") ee_image_info(srtm) # Landast8 l8 <- ee$Image("LANDSAT/LC08/C01/T1_SR/LC08_038029_20180810")$select("B4") ee_image_info(l8) ## End(Not run)
## Not run: library(rgee) ee_Initialize() # World SRTM srtm <- ee$Image("CGIAR/SRTM90_V4") ee_image_info(srtm) # Landast8 l8 <- ee$Image("LANDSAT/LC08/C01/T1_SR/LC08_038029_20180810")$select("B4") ee_image_info(l8) ## End(Not run)
Creates a task to export an EE Image to their EE Assets.
This function is a wrapper around ee$batch$Export$image$toAsset(...)
.
ee_image_to_asset( image, description = "myExportImageTask", assetId = NULL, overwrite = FALSE, pyramidingPolicy = NULL, dimensions = NULL, region = NULL, scale = NULL, crs = NULL, crsTransform = NULL, maxPixels = NULL )
ee_image_to_asset( image, description = "myExportImageTask", assetId = NULL, overwrite = FALSE, pyramidingPolicy = NULL, dimensions = NULL, region = NULL, scale = NULL, crs = NULL, crsTransform = NULL, maxPixels = NULL )
image |
The image to be exported. |
description |
Human-readable name of the task. |
assetId |
The destination asset ID. |
overwrite |
Specifies whether to overwrite the assetId if it already exists. |
pyramidingPolicy |
The pyramiding policy to apply to each band in the image, a dictionary keyed by band name. Values must be one of: "mean", "sample", "min", "max", or "mode". Defaults to "mean". A special key, ".default", may be used to change the default for all bands. |
dimensions |
Defines the image dimensions for export. It can be specified as a single positive integer for the maximum dimension or in "WIDTHxHEIGHT" format, where WIDTH and HEIGHT are positive integers. |
region |
The lon,lat coordinates for a LinearRing or Polygon specifying the region to export. It can be specified as nested lists of numbers or a serialized string. Defaults to the image's region. |
scale |
Resolution given in meters per pixel. Defaults to the native resolution of the image asset unless a crsTransform is specified. |
crs |
The coordinate reference system of the exported image's projection. Defaults to the image's default projection. |
crsTransform |
A comma-separated string of 6 numbers describing the affine transform of the coordinate reference system of the exported image's projection, in the order: xScale, xShearing, xTranslation, yShearing, yScale, and yTranslation. Defaults to the image's native CRS transform. |
maxPixels |
The maximum allowed number of pixels in the exported image. The task will fail if the exported region covers more pixels in the specified projection. Defaults to 100,000,000. **kwargs: Holds other keyword arguments that may have been deprecated, such as 'crs_transform'. |
An unstarted task
Other image export task creator:
ee_image_to_drive()
,
ee_image_to_gcs()
## Not run: library(rgee) library(stars) library(sf) ee_users() ee_Initialize() # Define study area (local -> earth engine) # Communal Reserve Amarakaeri - Peru rlist <- list(xmin = -71.13, xmax = -70.95,ymin = -12.89, ymax = -12.73) ROI <- c(rlist$xmin, rlist$ymin, rlist$xmax, rlist$ymin, rlist$xmax, rlist$ymax, rlist$xmin, rlist$ymax, rlist$xmin, rlist$ymin) ee_ROI <- matrix(ROI, ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() %>% st_sfc() %>% st_set_crs(4326) %>% sf_as_ee() # Get the mean annual NDVI for 2011 cloudMaskL457 <- function(image) { qa <- image$select("pixel_qa") cloud <- qa$bitwiseAnd(32L)$ And(qa$bitwiseAnd(128L))$ Or(qa$bitwiseAnd(8L)) mask2 <- image$mask()$reduce(ee$Reducer$min()) image <- image$updateMask(cloud$Not())$updateMask(mask2) image$normalizedDifference(list("B4", "B3")) } ic_l5 <- ee$ImageCollection("LANDSAT/LT05/C01/T1_SR")$ filterBounds(ee$FeatureCollection(ee_ROI))$ filterDate("2011-01-01", "2011-12-31")$ map(cloudMaskL457) # Create simple composite mean_l5 <- ic_l5$mean()$rename("NDVI") mean_l5 <- mean_l5$reproject(crs = "EPSG:4326", scale = 500) mean_l5_Amarakaeri <- mean_l5$clip(ee_ROI) # Move results from Earth Engine to Drive assetid <- paste0(ee_get_assethome(), '/l5_Amarakaeri') task_img <- ee_image_to_asset( image = mean_l5_Amarakaeri, assetId = assetid, overwrite = TRUE, scale = 500, region = ee_ROI ) task_img$start() ee_monitoring(task_img) ee_l5 <- ee$Image(assetid) Map$centerObject(ee_l5) Map$addLayer(ee_l5) ## End(Not run)
## Not run: library(rgee) library(stars) library(sf) ee_users() ee_Initialize() # Define study area (local -> earth engine) # Communal Reserve Amarakaeri - Peru rlist <- list(xmin = -71.13, xmax = -70.95,ymin = -12.89, ymax = -12.73) ROI <- c(rlist$xmin, rlist$ymin, rlist$xmax, rlist$ymin, rlist$xmax, rlist$ymax, rlist$xmin, rlist$ymax, rlist$xmin, rlist$ymin) ee_ROI <- matrix(ROI, ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() %>% st_sfc() %>% st_set_crs(4326) %>% sf_as_ee() # Get the mean annual NDVI for 2011 cloudMaskL457 <- function(image) { qa <- image$select("pixel_qa") cloud <- qa$bitwiseAnd(32L)$ And(qa$bitwiseAnd(128L))$ Or(qa$bitwiseAnd(8L)) mask2 <- image$mask()$reduce(ee$Reducer$min()) image <- image$updateMask(cloud$Not())$updateMask(mask2) image$normalizedDifference(list("B4", "B3")) } ic_l5 <- ee$ImageCollection("LANDSAT/LT05/C01/T1_SR")$ filterBounds(ee$FeatureCollection(ee_ROI))$ filterDate("2011-01-01", "2011-12-31")$ map(cloudMaskL457) # Create simple composite mean_l5 <- ic_l5$mean()$rename("NDVI") mean_l5 <- mean_l5$reproject(crs = "EPSG:4326", scale = 500) mean_l5_Amarakaeri <- mean_l5$clip(ee_ROI) # Move results from Earth Engine to Drive assetid <- paste0(ee_get_assethome(), '/l5_Amarakaeri') task_img <- ee_image_to_asset( image = mean_l5_Amarakaeri, assetId = assetid, overwrite = TRUE, scale = 500, region = ee_ROI ) task_img$start() ee_monitoring(task_img) ee_l5 <- ee$Image(assetid) Map$centerObject(ee_l5) Map$addLayer(ee_l5) ## End(Not run)
Creates a task to export an EE Image to Drive.
This function is a wrapper around ee$batch$Export$image$toDrive(...)
.
ee_image_to_drive( image, description = "myExportImageTask", folder = "rgee_backup", fileNamePrefix = NULL, timePrefix = TRUE, dimensions = NULL, region = NULL, scale = NULL, crs = NULL, crsTransform = NULL, maxPixels = NULL, shardSize = NULL, fileDimensions = NULL, skipEmptyTiles = NULL, fileFormat = NULL, formatOptions = NULL )
ee_image_to_drive( image, description = "myExportImageTask", folder = "rgee_backup", fileNamePrefix = NULL, timePrefix = TRUE, dimensions = NULL, region = NULL, scale = NULL, crs = NULL, crsTransform = NULL, maxPixels = NULL, shardSize = NULL, fileDimensions = NULL, skipEmptyTiles = NULL, fileFormat = NULL, formatOptions = NULL )
image |
Image to be exported. |
description |
User-friendly name of the task. |
folder |
Folder name in the user's Drive account where the export will be stored. Default is "rgee-backup". |
fileNamePrefix |
Prefix for the export filename in Google Drive. Defaults to the task name. |
timePrefix |
Prefixes the current date and time to the exported files. |
dimensions |
Defines the image dimensions for export. It can be specified as a single positive integer for the maximum dimension or in "WIDTHxHEIGHT" format, where WIDTH and HEIGHT are positive integers. |
region |
The lon,lat coordinates for a LinearRing or Polygon specifying the region to export. It can be specified as nested lists of numbers or a serialized string. Defaults to the image's region. |
scale |
Image resolution in meters per pixel. Defaults to the native resolution of the image asset unless a crsTransform is specified. |
crs |
Coordinate reference system of the exported image's projection. Defaults to the image's default projection. |
crsTransform |
A comma-separated string of 6 numbers describing the affine transform of the coordinate reference system of the exported image's projection, in the order: xScale, xShearing, xTranslation, yShearing, yScale, and yTranslation. Defaults to the image's native CRS transform. |
maxPixels |
Maximum number of pixels allowed in the exported image. The task will fail if the exported region exceeds this limit in the specified projection. Defaults to 100,000,000. |
shardSize |
Size given in pixels of the shards in which the image will be computed. Defaults to 256. |
fileDimensions |
Defines the pixel dimensions for each image file when the image size exceeds the capacity of a single file.To indicate a square shape, use a single number; for width and height, use a list of two dimensions. Please note that the image will be clipped to the overall image dimensions. The specified file dimensions must be a multiple of the shardSize. |
skipEmptyTiles |
If TRUE, skip writing empty (i.e., fully-masked) image tiles. Defaults to FALSE. |
fileFormat |
The string file format to which the image is exported. Currently only 'GeoTIFF' and 'TFRecord' are supported, defaults to 'GeoTIFF'. |
formatOptions |
A dictionary of string keys to format-specific options. **kwargs: Holds other keyword arguments that may have been deprecated, such as 'crs_transform', 'driveFolder', and 'driveFileNamePrefix'. |
An unstarted task that exports the image to Drive.
Other image export task creator:
ee_image_to_asset()
,
ee_image_to_gcs()
## Not run: library(rgee) library(stars) library(sf) ee_users() ee_Initialize(drive = TRUE) # Define study area (local -> earth engine) # Communal Reserve Amarakaeri - Peru rlist <- list(xmin = -71.13, xmax = -70.95,ymin = -12.89, ymax = -12.73) ROI <- c(rlist$xmin, rlist$ymin, rlist$xmax, rlist$ymin, rlist$xmax, rlist$ymax, rlist$xmin, rlist$ymax, rlist$xmin, rlist$ymin) ee_ROI <- matrix(ROI, ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() %>% st_sfc() %>% st_set_crs(4326) %>% sf_as_ee() # Get the mean annual NDVI for 2011 cloudMaskL457 <- function(image) { qa <- image$select("pixel_qa") cloud <- qa$bitwiseAnd(32L)$ And(qa$bitwiseAnd(128L))$ Or(qa$bitwiseAnd(8L)) mask2 <- image$mask()$reduce(ee$Reducer$min()) image <- image$updateMask(cloud$Not())$updateMask(mask2) image$normalizedDifference(list("B4", "B3")) } ic_l5 <- ee$ImageCollection("LANDSAT/LT05/C01/T1_SR")$ filterBounds(ee$FeatureCollection(ee_ROI))$ filterDate("2011-01-01", "2011-12-31")$ map(cloudMaskL457) # Create simple composite mean_l5 <- ic_l5$mean()$rename("NDVI") mean_l5 <- mean_l5$reproject(crs = "EPSG:4326", scale = 500) mean_l5_Amarakaeri <- mean_l5$clip(ee_ROI) # Move results from Earth Engine to Drive task_img <- ee_image_to_drive( image = mean_l5_Amarakaeri, fileFormat = "GEO_TIFF", region = ee_ROI, fileNamePrefix = "my_image_demo" ) task_img$start() ee_monitoring(task_img) # Move results from Drive to local ee_drive_to_local(task = task_img) ## End(Not run)
## Not run: library(rgee) library(stars) library(sf) ee_users() ee_Initialize(drive = TRUE) # Define study area (local -> earth engine) # Communal Reserve Amarakaeri - Peru rlist <- list(xmin = -71.13, xmax = -70.95,ymin = -12.89, ymax = -12.73) ROI <- c(rlist$xmin, rlist$ymin, rlist$xmax, rlist$ymin, rlist$xmax, rlist$ymax, rlist$xmin, rlist$ymax, rlist$xmin, rlist$ymin) ee_ROI <- matrix(ROI, ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() %>% st_sfc() %>% st_set_crs(4326) %>% sf_as_ee() # Get the mean annual NDVI for 2011 cloudMaskL457 <- function(image) { qa <- image$select("pixel_qa") cloud <- qa$bitwiseAnd(32L)$ And(qa$bitwiseAnd(128L))$ Or(qa$bitwiseAnd(8L)) mask2 <- image$mask()$reduce(ee$Reducer$min()) image <- image$updateMask(cloud$Not())$updateMask(mask2) image$normalizedDifference(list("B4", "B3")) } ic_l5 <- ee$ImageCollection("LANDSAT/LT05/C01/T1_SR")$ filterBounds(ee$FeatureCollection(ee_ROI))$ filterDate("2011-01-01", "2011-12-31")$ map(cloudMaskL457) # Create simple composite mean_l5 <- ic_l5$mean()$rename("NDVI") mean_l5 <- mean_l5$reproject(crs = "EPSG:4326", scale = 500) mean_l5_Amarakaeri <- mean_l5$clip(ee_ROI) # Move results from Earth Engine to Drive task_img <- ee_image_to_drive( image = mean_l5_Amarakaeri, fileFormat = "GEO_TIFF", region = ee_ROI, fileNamePrefix = "my_image_demo" ) task_img$start() ee_monitoring(task_img) # Move results from Drive to local ee_drive_to_local(task = task_img) ## End(Not run)
Creates a task to export an EE Image to Google Cloud Storage.
This function is a wrapper around
ee$batch$Export$image$toCloudStorage(...)
.
ee_image_to_gcs( image, description = "myExportImageTask", bucket = NULL, fileNamePrefix = NULL, timePrefix = TRUE, dimensions = NULL, region = NULL, scale = NULL, crs = NULL, crsTransform = NULL, maxPixels = NULL, shardSize = NULL, fileDimensions = NULL, skipEmptyTiles = NULL, fileFormat = NULL, formatOptions = NULL )
ee_image_to_gcs( image, description = "myExportImageTask", bucket = NULL, fileNamePrefix = NULL, timePrefix = TRUE, dimensions = NULL, region = NULL, scale = NULL, crs = NULL, crsTransform = NULL, maxPixels = NULL, shardSize = NULL, fileDimensions = NULL, skipEmptyTiles = NULL, fileFormat = NULL, formatOptions = NULL )
image |
The image to be exported. |
description |
User-friendly name of the task. |
bucket |
Cloud Storage bucket name for the export. |
fileNamePrefix |
Cloud Storage object name prefix for the export. Defaults to the name of the task. |
timePrefix |
Prefixes the current date and time to the exported files |
dimensions |
Defines the image dimensions for export. It can be specified as a single positive integer for the maximum dimension or in "WIDTHxHEIGHT" format, where WIDTH and HEIGHT are positive integers. |
region |
The lon,lat coordinates for a LinearRing or Polygon specifying the region to export. It can be specified as nested lists of numbers or a serialized string. Defaults to the image's region. |
scale |
Image resolution in meters per pixel. Defaults to the native resolution of the image asset unless a crsTransform is specified. |
crs |
The coordinate reference system of the exported image's projection. Defaults to the image's default projection. |
crsTransform |
A comma-separated string of 6 numbers describing the affine transform of the coordinate reference system of the exported image's projection, in the order: xScale, xShearing, xTranslation, yShearing, yScale, and yTranslation. Defaults to the image's native CRS transform. |
maxPixels |
Maximum number of pixels allowed in the exported image. The task will fail if the exported region exceeds this limit in the specified projection. Defaults to 100,000,000. |
shardSize |
Size given in pixels of the shards in which the image will be computed. Defaults to 256. |
fileDimensions |
Defines the pixel dimensions for each image file when the image size exceeds the capacity of a single file.To indicate a square shape, use a single number; for width and height, use a list of two dimensions. Please note that the image will be clipped to the overall image dimensions. The specified file dimensions must be a multiple of the shardSize. |
skipEmptyTiles |
If TRUE, skip writing empty (i.e., fully-masked) image tiles. Defaults to FALSE. |
fileFormat |
The string file format to which the image is exported. Currently only 'GeoTIFF' and 'TFRecord' are supported, defaults to 'GeoTIFF'. |
formatOptions |
A dictionary of string keys to format-specific options. **kwargs: Holds other keyword arguments that may have been deprecated, such as 'crs_transform'. |
An unstarted Task that exports the image to Google Cloud Storage.
Other image export task creator:
ee_image_to_asset()
,
ee_image_to_drive()
## Not run: library(rgee) library(stars) library(sf) ee_users() ee_Initialize(gcs = TRUE) # Define study area (local -> earth engine) # Communal Reserve Amarakaeri - Peru rlist <- list(xmin = -71.13, xmax = -70.95,ymin = -12.89, ymax = -12.73) ROI <- c(rlist$xmin, rlist$ymin, rlist$xmax, rlist$ymin, rlist$xmax, rlist$ymax, rlist$xmin, rlist$ymax, rlist$xmin, rlist$ymin) ee_ROI <- matrix(ROI, ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() %>% st_sfc() %>% st_set_crs(4326) %>% sf_as_ee() # Get the mean annual NDVI for 2011 cloudMaskL457 <- function(image) { qa <- image$select("pixel_qa") cloud <- qa$bitwiseAnd(32L)$ And(qa$bitwiseAnd(128L))$ Or(qa$bitwiseAnd(8L)) mask2 <- image$mask()$reduce(ee$Reducer$min()) image <- image$updateMask(cloud$Not())$updateMask(mask2) image$normalizedDifference(list("B4", "B3")) } ic_l5 <- ee$ImageCollection("LANDSAT/LT05/C01/T1_SR")$ filterBounds(ee$FeatureCollection(ee_ROI))$ filterDate("2011-01-01", "2011-12-31")$ map(cloudMaskL457) # Create simple composite mean_l5 <- ic_l5$mean()$rename("NDVI") mean_l5 <- mean_l5$reproject(crs = "EPSG:4326", scale = 500) mean_l5_Amarakaeri <- mean_l5$clip(ee_ROI) # Move results from Earth Engine to GCS task_img <- ee_image_to_gcs( image = mean_l5_Amarakaeri, bucket = "rgee_dev", fileFormat = "GEO_TIFF", region = ee_ROI, fileNamePrefix = "my_image_demo" ) task_img$start() ee_monitoring(task_img) # Move results from GCS to local ee_gcs_to_local(task = task_img) ## End(Not run)
## Not run: library(rgee) library(stars) library(sf) ee_users() ee_Initialize(gcs = TRUE) # Define study area (local -> earth engine) # Communal Reserve Amarakaeri - Peru rlist <- list(xmin = -71.13, xmax = -70.95,ymin = -12.89, ymax = -12.73) ROI <- c(rlist$xmin, rlist$ymin, rlist$xmax, rlist$ymin, rlist$xmax, rlist$ymax, rlist$xmin, rlist$ymax, rlist$xmin, rlist$ymin) ee_ROI <- matrix(ROI, ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() %>% st_sfc() %>% st_set_crs(4326) %>% sf_as_ee() # Get the mean annual NDVI for 2011 cloudMaskL457 <- function(image) { qa <- image$select("pixel_qa") cloud <- qa$bitwiseAnd(32L)$ And(qa$bitwiseAnd(128L))$ Or(qa$bitwiseAnd(8L)) mask2 <- image$mask()$reduce(ee$Reducer$min()) image <- image$updateMask(cloud$Not())$updateMask(mask2) image$normalizedDifference(list("B4", "B3")) } ic_l5 <- ee$ImageCollection("LANDSAT/LT05/C01/T1_SR")$ filterBounds(ee$FeatureCollection(ee_ROI))$ filterDate("2011-01-01", "2011-12-31")$ map(cloudMaskL457) # Create simple composite mean_l5 <- ic_l5$mean()$rename("NDVI") mean_l5 <- mean_l5$reproject(crs = "EPSG:4326", scale = 500) mean_l5_Amarakaeri <- mean_l5$clip(ee_ROI) # Move results from Earth Engine to GCS task_img <- ee_image_to_gcs( image = mean_l5_Amarakaeri, bucket = "rgee_dev", fileFormat = "GEO_TIFF", region = ee_ROI, fileNamePrefix = "my_image_demo" ) task_img$start() ee_monitoring(task_img) # Move results from GCS to local ee_gcs_to_local(task = task_img) ## End(Not run)
Save an EE ImageCollection to the local system.
ee_imagecollection_to_local( ic, region, dsn = NULL, via = "drive", container = "rgee_backup", scale = NULL, maxPixels = 1e+09, lazy = FALSE, public = TRUE, add_metadata = TRUE, timePrefix = TRUE, quiet = FALSE, ... )
ee_imagecollection_to_local( ic, region, dsn = NULL, via = "drive", container = "rgee_backup", scale = NULL, maxPixels = 1e+09, lazy = FALSE, public = TRUE, add_metadata = TRUE, timePrefix = TRUE, quiet = FALSE, ... )
ic |
ee$ImageCollection to be saved to the system. |
region |
EE Geometry (ee$Geometry$Polygon). The
CRS needs to be the same that the |
dsn |
Character. Output filename. If missing, a temporary file will be created for each image. |
via |
Character. Method to export the image. Two methods are available: "drive", "gcs". See details. |
container |
Character. Name of the folder ('drive') or bucket ('gcs')
to be exported into (ignored if |
scale |
Numeric. The resolution in meters per pixel. Defaults to the native resolution of the image. |
maxPixels |
Numeric. The maximum allowable number of pixels in the exported image. If the exported region covers more pixels than the specified limit in the given projection, the task will fail. Defaults to 100,000,000. |
lazy |
Logical. If TRUE, a |
public |
Logical. If TRUE, a public link to the image is created. |
add_metadata |
Add metadata to the stars_proxy object. See details. |
timePrefix |
Logical. Add current date and time ( |
quiet |
Logical. Suppress info message |
... |
Extra exporting argument. See ee_image_to_drive and |
ee_imagecollection_to_local
supports the download of ee$Images
using two different options: "drive"
(Google Drive) and "gcs"
(
Google Cloud Storage). In both cases, ee_imagecollection_to_local
works as follow:
1. A task is initiate (i.e., ee$batch$Task$start()
) to
transfer the ee$Image
from Earth Engine to the intermediate container
specified in the argument via
.
2. If the argument lazy
is TRUE, the task will not be
monitored. This is useful to lunch several tasks simultaneously and
calls them later using ee_utils_future_value
or
future::value
. At the end of this step,
the ee$Images
are stored on the path specified in the argument
dsn
.
3. Finally, if the add_metadata
argument is set to TRUE,
a list containing the following elements will be appended to the dsn
argument.
if via is "drive":
ee_id: Name of the Earth Engine task.
drive_name: Name of the Image in Google Drive.
drive_id: Id of the Image in Google Drive.
drive_download_link: Download link to the image.
if via is "gcs":
ee_id: Name of the Earth Engine task.
gcs_name: Name of the Image in Google Cloud Storage.
gcs_bucket: Name of the bucket.
gcs_fileFormat: Format of the image.
gcs_public_link: Download link to the image.
gcs_URI: gs:// link to the image.
For getting more information about exporting data from Earth Engine, take a look at the Google Earth Engine Guide - Export data.
If add_metadata is FALSE, ee_imagecollection_to_local
will
return a character vector containing the filename of the images downloaded.
Otherwise, if add_metadata is TRUE, will return a list with extra information
related to the exportation (see details).
Other image download functions:
ee_as_raster()
,
ee_as_rast()
,
ee_as_stars()
,
ee_as_thumbnail()
## Not run: library(rgee) library(raster) ee_Initialize(drive = TRUE, gcs = TRUE) # USDA example loc <- ee$Geometry$Point(-99.2222, 46.7816) collection <- ee$ImageCollection('USDA/NAIP/DOQQ')$ filterBounds(loc)$ filterDate('2008-01-01', '2020-01-01')$ filter(ee$Filter$listContains("system:band_names", "N")) # From ImageCollection to local directory ee_crs <- collection$first()$projection()$getInfo()$crs geometry <- collection$first()$geometry(proj = ee_crs)$bounds() tmp <- tempdir() ## Using drive # one by once ic_drive_files_1 <- ee_imagecollection_to_local( ic = collection, region = geometry, scale = 250, dsn = file.path(tmp, "drive_") ) # all at once ic_drive_files_2 <- ee_imagecollection_to_local( ic = collection, region = geometry, scale = 250, lazy = TRUE, dsn = file.path(tmp, "drive_") ) # From Google Drive to client-side doqq_dsn <- ic_drive_files_2 %>% ee_utils_future_value() sapply(doqq_dsn, '[[', 1) ## End(Not run)
## Not run: library(rgee) library(raster) ee_Initialize(drive = TRUE, gcs = TRUE) # USDA example loc <- ee$Geometry$Point(-99.2222, 46.7816) collection <- ee$ImageCollection('USDA/NAIP/DOQQ')$ filterBounds(loc)$ filterDate('2008-01-01', '2020-01-01')$ filter(ee$Filter$listContains("system:band_names", "N")) # From ImageCollection to local directory ee_crs <- collection$first()$projection()$getInfo()$crs geometry <- collection$first()$geometry(proj = ee_crs)$bounds() tmp <- tempdir() ## Using drive # one by once ic_drive_files_1 <- ee_imagecollection_to_local( ic = collection, region = geometry, scale = 250, dsn = file.path(tmp, "drive_") ) # all at once ic_drive_files_2 <- ee_imagecollection_to_local( ic = collection, region = geometry, scale = 250, lazy = TRUE, dsn = file.path(tmp, "drive_") ) # From Google Drive to client-side doqq_dsn <- ic_drive_files_2 %>% ee_utils_future_value() sapply(doqq_dsn, '[[', 1) ## End(Not run)
Authorize rgee to manage Earth Engine resources, Google
Drive, and Google Cloud Storage. The ee_initialize()
via
web-browser will ask users to sign into your Google account and
allows you to grant permission to manage resources. This function is
a wrapper around rgee::ee$Initialize()
.
ee_Initialize( user = NULL, drive = FALSE, gcs = FALSE, credentials = "persistent", opt_url = NULL, cloud_api_key = NULL, http_transport = NULL, project = NULL, quiet = FALSE, auth_mode = "notebook", auth_quiet = FALSE, ... )
ee_Initialize( user = NULL, drive = FALSE, gcs = FALSE, credentials = "persistent", opt_url = NULL, cloud_api_key = NULL, http_transport = NULL, project = NULL, quiet = FALSE, auth_mode = "notebook", auth_quiet = FALSE, ... )
user |
Character (optional, e.g. |
drive |
Logical (optional). If set to TRUE, the drive credential will be
cached in the path |
gcs |
Logical (optional). If TRUE, the Google Cloud Storage
credential will be cached in the path |
credentials |
OAuth2 GEE credentials. 'persistent' (default) means it will use the GEE credentials already stored in the filesystem. If the credentials are not found, it will raise an explanatory exception guiding the user to create those credentials. |
opt_url |
The base url for the EarthEngine REST API to connect to. |
cloud_api_key |
An optional API key to use the Cloud API. |
http_transport |
The HTTP transport method to use for making requests |
project |
The client project ID or number to be used for making API calls. |
quiet |
Logical. Suppress info messages. |
auth_mode |
The authentication mode. One of:
|
auth_quiet |
Logical. ee_Authenticate quiet parameter. If TRUE, do not require interactive prompts and force –no-browser mode for gcloud. |
... |
Extra exporting argument. See ee_Authenticate. |
ee_Initialize()
can manage Google Drive, and Google
Cloud Storage resources using the R packages googledrive and
googlecloudStorageR, respectively. By default, rgee does not require
them. These are only necessary to enable rgee I/O functionality.
All user credentials are saved in the directory
~/.config/earthengine/
.
No return value, called for initializing the earthengine-api.
Other session management functions:
ee_user_info()
,
ee_users()
,
ee_version()
## Not run: library(rgee) # Simple init - Load just the Earth Engine credential ee_Initialize() ee_user_info() ## End(Not run)
## Not run: library(rgee) # Simple init - Load just the Earth Engine credential ee_Initialize() ee_user_info() ## End(Not run)
Create an isolated Python virtual environment with all rgee dependencies.
ee_install
realize the following six (6) tasks:
1. IIf you do not have a Python environment installed, it will display an interactive menu to install Miniconda (a free minimal installer for conda).
2. If it exists, the previous Python environment specified in
the py_env
argument will be deleted.
3. Create a new Python environment (See py_env
) argument.
4. Set the environment variable EARTHENGINE_PYTHON and EARTHENGINE_ENV. It is used to define RETICULATE_PYTHON when the library is loaded. See this article for further details.
5. Install rgee Python dependencies. Using reticulate::py_install
.
6. Interactive menu to confirm if restart the R session to see changes.
ee_install( py_env = "rgee", earthengine_version = ee_version(), python_version = "3.8", confirm = interactive() )
ee_install( py_env = "rgee", earthengine_version = ee_version(), python_version = "3.8", confirm = interactive() )
py_env |
Character. The name, or full path, of the Python environment to be used by rgee. |
earthengine_version |
Character. The Earth Engine Python API version
to install. By default |
python_version |
Only Windows users. The Python version to be used in this conda environment. If set to NULL, the default Python package will be used. For example, you can specify python_version = "3.6" to request the creation of the conda environment with a copy of Python 3.6. |
confirm |
Logical. Confirm before restarting R?. |
No return value, called for installing non-R dependencies.
Other ee_install functions:
ee_install_set_pyenv()
,
ee_install_upgrade()
## Not run: library(rgee) # ee_install() ## End(Not run)
## Not run: library(rgee) # ee_install() ## End(Not run)
Specify a Python environment to use with rgee. This function creates
a .Renviron file that contains two environmental variables: 'EARTHENGINE PYTHON'
and 'EARTHENGINE ENV'. If an .Renviron file is already in use, ee_install_set_pyenv
will
append the two previous environmental variables to the end of the file. If the prior two
environmental variables were previously set, ee_install_set_pyenv
will simply overwrite them.
See details to get more information.
ee_install_set_pyenv( py_path, py_env = NULL, Renviron = "global", confirm = interactive(), quiet = FALSE )
ee_install_set_pyenv( py_path, py_env = NULL, Renviron = "global", confirm = interactive(), quiet = FALSE )
py_path |
The path to a Python interpreter |
py_env |
The name of the conda or venv environment. If
NULL, |
Renviron |
Character. If it is "global" the environment variables are set in the .Renviron located in the Sys.getenv("HOME") folder. On the other hand, if it is "local" the environment variables are set in the .Renviron on the working directory (getwd()). Finally, users can also enter a specific path (see examples). |
confirm |
Logical. Confirm before restarting R?. |
quiet |
Logical. Suppress info message |
The 'EARTHENGINE_PYTHON' set the Python interpreter path to use with rgee.
In the other hand, the 'EARTHENGINE ENV' set the Python environment name. Both
variables are storage in an .Renviron file. See Startup
documentation to
get more information about startup files in R.
no return value, called for setting EARTHENGINE_PYTHON in .Renviron
Other ee_install functions:
ee_install_upgrade()
,
ee_install()
## Not run: library(rgee) ## IMPORTANT: Change 'py_path' argument according to your own Python PATH ## For Anaconda users - Windows OS ## OBS: Anaconda Python PATH can vary, run “where anaconda” in console. # win_py_path = paste0( # "C:/Users/UNICORN/AppData/Local/Programs/Python/", # "Python37/python.exe" # ) # ee_install_set_pyenv( # py_path = win_py_path, # py_env = "rgee" # Change it for your own Python ENV # ) ## For Anaconda users - MacOS users # ee_install_set_pyenv( # py_path = "/Users/UNICORN/opt/anaconda3/bin/python", # py_env = "rgee" # Change it for your own Python ENV # ) # ## For Miniconda users - Windows OS # win_py_path = paste0( # "C:/Users/UNICORN/AppData/Local/r-miniconda/envs/rgee/", # "python.exe" # ) # ee_install_set_pyenv( # py_path = win_py_path, # py_env = "rgee" # Change it for your own Python ENV # ) ## For Miniconda users - Linux/MacOS users # unix_py_path = paste0( # "/home/UNICORN/.local/share/r-miniconda/envs/", # "rgee/bin/python3" # ) # ee_install_set_pyenv( # py_path = unix_py_path, # py_env = "rgee" # Change it for your own Python ENV # ) ## For virtualenv users - Linux/MacOS users # ee_install_set_pyenv( # py_path = "/home/UNICORN/.virtualenvs/rgee/bin/python", # py_env = "rgee" # Change it for your own Python ENV # ) ## For Python root user - Linux/MacOS users # ee_install_set_pyenv( # py_path = "/usr/bin/python3", # py_env = NULL, # Renviron = "global" # Save ENV variables in the global .Renv file # ) # ee_install_set_pyenv( # py_path = "/usr/bin/python3", # py_env = NULL, # Renviron = "local" # Save ENV variables in a local .Renv file # ) ## End(Not run)
## Not run: library(rgee) ## IMPORTANT: Change 'py_path' argument according to your own Python PATH ## For Anaconda users - Windows OS ## OBS: Anaconda Python PATH can vary, run “where anaconda” in console. # win_py_path = paste0( # "C:/Users/UNICORN/AppData/Local/Programs/Python/", # "Python37/python.exe" # ) # ee_install_set_pyenv( # py_path = win_py_path, # py_env = "rgee" # Change it for your own Python ENV # ) ## For Anaconda users - MacOS users # ee_install_set_pyenv( # py_path = "/Users/UNICORN/opt/anaconda3/bin/python", # py_env = "rgee" # Change it for your own Python ENV # ) # ## For Miniconda users - Windows OS # win_py_path = paste0( # "C:/Users/UNICORN/AppData/Local/r-miniconda/envs/rgee/", # "python.exe" # ) # ee_install_set_pyenv( # py_path = win_py_path, # py_env = "rgee" # Change it for your own Python ENV # ) ## For Miniconda users - Linux/MacOS users # unix_py_path = paste0( # "/home/UNICORN/.local/share/r-miniconda/envs/", # "rgee/bin/python3" # ) # ee_install_set_pyenv( # py_path = unix_py_path, # py_env = "rgee" # Change it for your own Python ENV # ) ## For virtualenv users - Linux/MacOS users # ee_install_set_pyenv( # py_path = "/home/UNICORN/.virtualenvs/rgee/bin/python", # py_env = "rgee" # Change it for your own Python ENV # ) ## For Python root user - Linux/MacOS users # ee_install_set_pyenv( # py_path = "/usr/bin/python3", # py_env = NULL, # Renviron = "global" # Save ENV variables in the global .Renv file # ) # ee_install_set_pyenv( # py_path = "/usr/bin/python3", # py_env = NULL, # Renviron = "local" # Save ENV variables in a local .Renv file # ) ## End(Not run)
Upgrade the Earth Engine Python API
ee_install_upgrade( version = NULL, earthengine_env = Sys.getenv("EARTHENGINE_ENV") )
ee_install_upgrade( version = NULL, earthengine_env = Sys.getenv("EARTHENGINE_ENV") )
version |
Character. The Earth Engine Python API version to upgrade.
By default |
earthengine_env |
Character. The name, or full path, of the environment in which the earthengine-api packages are to be installed. |
no return value, called to upgrade the earthengine-api Python package
Other ee_install functions:
ee_install_set_pyenv()
,
ee_install()
## Not run: library(rgee) # ee_install_upgrade() ## End(Not run)
## Not run: library(rgee) # ee_install_upgrade() ## End(Not run)
R functions to manage the Earth Engine Asset. The interface allows users to create and eliminate folders, move and copy assets, set and delete properties, handle access control lists, and manage and/or cancel tasks.
ee_manage_create(path_asset, asset_type = "Folder", quiet = FALSE) ee_manage_delete(path_asset, quiet = FALSE, strict = TRUE) ee_manage_assetlist(path_asset, quiet = FALSE, strict = TRUE) ee_manage_quota(quiet = FALSE) ee_manage_copy(path_asset, final_path, strict = TRUE, quiet = FALSE) ee_manage_move(path_asset, final_path, strict = TRUE, quiet = FALSE) ee_manage_set_properties(path_asset, add_properties, strict = TRUE) ee_manage_delete_properties(path_asset, del_properties = "ALL", strict = TRUE) ee_manage_asset_access( path_asset, owner = NULL, editor = NULL, viewer = NULL, all_users_can_read = TRUE, quiet = FALSE ) ee_manage_task(cache = FALSE) ee_manage_cancel_all_running_task() ee_manage_asset_size(path_asset, quiet = FALSE)
ee_manage_create(path_asset, asset_type = "Folder", quiet = FALSE) ee_manage_delete(path_asset, quiet = FALSE, strict = TRUE) ee_manage_assetlist(path_asset, quiet = FALSE, strict = TRUE) ee_manage_quota(quiet = FALSE) ee_manage_copy(path_asset, final_path, strict = TRUE, quiet = FALSE) ee_manage_move(path_asset, final_path, strict = TRUE, quiet = FALSE) ee_manage_set_properties(path_asset, add_properties, strict = TRUE) ee_manage_delete_properties(path_asset, del_properties = "ALL", strict = TRUE) ee_manage_asset_access( path_asset, owner = NULL, editor = NULL, viewer = NULL, all_users_can_read = TRUE, quiet = FALSE ) ee_manage_task(cache = FALSE) ee_manage_cancel_all_running_task() ee_manage_asset_size(path_asset, quiet = FALSE)
path_asset |
Character. Name of the EE asset (Table, Image, Folder or ImageCollection). |
asset_type |
Character. The asset type to create ('Folder' or 'ImageCollection'). |
quiet |
Logical. Suppress info message. |
strict |
Character vector. If TRUE, the existence of the asset will be evaluated before performing the task. |
final_path |
Character. Output filename (e.g users/datacolecfbf/ic_moved) |
add_properties |
List. Set of parameters to established as a property of an EE object. See details. |
del_properties |
Character. Names of properties to be deleted. See details. |
owner |
Character vector. Define owner user in the IAM Policy. |
editor |
Character vector. Define editor users in the IAM Policy. |
viewer |
Character vector. Define viewer users in the IAM Policy. |
all_users_can_read |
Logical. All users can see the asset element. |
cache |
Logical. If TRUE, the task report will be saved in the /temp directory and used when the function. |
If the argument del_properties
is 'ALL',
ee_manage_delete_properties will delete all
the properties.
Samapriya Roy, adapted to R and improved by csaybar.
## Not run: library(rgee) ee_Initialize() ee_user_info() # Change datacolecfbf by your EE user to be able to reproduce user <- ee_get_assethome() addm <- function(x) sprintf("%s/%s",user, x) # 1. Create a folder or Image Collection # Change path asset according to your specific user ee_manage_create(addm("rgee")) # 1. List all the elements inside a folder or a ImageCollection ee_manage_assetlist(path_asset = addm("rgee")) # 2. Create a Folder or a ImageCollection ee_manage_create( path_asset = addm("rgee/rgee_folder"), asset_type = "Folder" ) ee_manage_create( path_asset = addm("rgee/rgee_ic"), asset_type = "ImageCollection" ) ee_manage_assetlist(path_asset = addm("rgee")) # 3. Shows Earth Engine quota ee_manage_quota() # 4. Move an EE object to another folder ee_manage_move( path_asset = addm("rgee/rgee_ic"), final_path = addm("rgee/rgee_folder/rgee_ic_moved") ) ee_manage_assetlist(path_asset = addm("rgee/rgee_folder")) # 5. Set properties to an EE object. ee_manage_set_properties( path_asset = addm("rgee/rgee_folder/rgee_ic_moved"), add_properties = list(message = "hello-world", language = "R") ) ic_id <- addm("rgee/rgee_folder/rgee_ic_moved") test_ic <- ee$ImageCollection(ic_id) test_ic$getInfo() # 6. Delete properties ee_manage_delete_properties( path_asset = addm("rgee/rgee_folder/rgee_ic_moved"), del_properties = c("message", "language") ) test_ic$getInfo() # 7. Create a report based on all the tasks # that are running or have already been completed. ee_manage_task() # 8. Cancel all the running task ee_manage_cancel_all_running_task() # 9. Delete EE objects or folders ee_manage_delete(addm("rgee/")) ## End(Not run)
## Not run: library(rgee) ee_Initialize() ee_user_info() # Change datacolecfbf by your EE user to be able to reproduce user <- ee_get_assethome() addm <- function(x) sprintf("%s/%s",user, x) # 1. Create a folder or Image Collection # Change path asset according to your specific user ee_manage_create(addm("rgee")) # 1. List all the elements inside a folder or a ImageCollection ee_manage_assetlist(path_asset = addm("rgee")) # 2. Create a Folder or a ImageCollection ee_manage_create( path_asset = addm("rgee/rgee_folder"), asset_type = "Folder" ) ee_manage_create( path_asset = addm("rgee/rgee_ic"), asset_type = "ImageCollection" ) ee_manage_assetlist(path_asset = addm("rgee")) # 3. Shows Earth Engine quota ee_manage_quota() # 4. Move an EE object to another folder ee_manage_move( path_asset = addm("rgee/rgee_ic"), final_path = addm("rgee/rgee_folder/rgee_ic_moved") ) ee_manage_assetlist(path_asset = addm("rgee/rgee_folder")) # 5. Set properties to an EE object. ee_manage_set_properties( path_asset = addm("rgee/rgee_folder/rgee_ic_moved"), add_properties = list(message = "hello-world", language = "R") ) ic_id <- addm("rgee/rgee_folder/rgee_ic_moved") test_ic <- ee$ImageCollection(ic_id) test_ic$getInfo() # 6. Delete properties ee_manage_delete_properties( path_asset = addm("rgee/rgee_folder/rgee_ic_moved"), del_properties = c("message", "language") ) test_ic$getInfo() # 7. Create a report based on all the tasks # that are running or have already been completed. ee_manage_task() # 8. Cancel all the running task ee_manage_cancel_all_running_task() # 9. Delete EE objects or folders ee_manage_delete(addm("rgee/")) ## End(Not run)
Monitoring Earth Engine task progress
ee_monitoring( task, task_time = 5, eeTaskList = FALSE, quiet = FALSE, max_attempts = 5 ) ee_check_task_status(task, quiet = FALSE)
ee_monitoring( task, task_time = 5, eeTaskList = FALSE, quiet = FALSE, max_attempts = 5 ) ee_check_task_status(task, quiet = FALSE)
task |
List generated after a task is started (i.e., after run
|
task_time |
Numeric. How often (in seconds) should a task be polled? |
eeTaskList |
Logical. If |
quiet |
Logical. Suppress info message |
max_attempts |
Number of times to monitor the tasks before ending. |
An ee$batch$Task
object with a state "COMPLETED" or "FAILED"
according to the Earth Engine server's response.
Other helper functions:
ee_help()
,
ee_print()
## Not run: library(rgee) ee_Initialize() ee_monitoring(eeTaskList = TRUE) ## End(Not run)
## Not run: library(rgee) ee_Initialize() ee_monitoring(eeTaskList = TRUE) ## End(Not run)
Print and return metadata about Spatial Earth Engine Objects.
ee_print
can retrieve information about the number of images
or features, number of bands or geometries, number of pixels, geotransform,
data type, properties, and object size.
ee_print(eeobject, ...) ## S3 method for class 'ee.geometry.Geometry' ee_print(eeobject, ..., clean = FALSE, quiet = FALSE) ## S3 method for class 'ee.feature.Feature' ee_print(eeobject, ..., clean = FALSE, quiet = FALSE) ## S3 method for class 'ee.featurecollection.FeatureCollection' ee_print(eeobject, ..., f_index = 0, clean = FALSE, quiet = FALSE) ## S3 method for class 'ee.image.Image' ee_print( eeobject, ..., img_band, time_end = TRUE, compression_ratio = 20, clean = FALSE, quiet = FALSE ) ## S3 method for class 'ee.imagecollection.ImageCollection' ee_print( eeobject, ..., time_end = TRUE, img_index = 0, img_band, compression_ratio = 20, clean = FALSE, quiet = FALSE )
ee_print(eeobject, ...) ## S3 method for class 'ee.geometry.Geometry' ee_print(eeobject, ..., clean = FALSE, quiet = FALSE) ## S3 method for class 'ee.feature.Feature' ee_print(eeobject, ..., clean = FALSE, quiet = FALSE) ## S3 method for class 'ee.featurecollection.FeatureCollection' ee_print(eeobject, ..., f_index = 0, clean = FALSE, quiet = FALSE) ## S3 method for class 'ee.image.Image' ee_print( eeobject, ..., img_band, time_end = TRUE, compression_ratio = 20, clean = FALSE, quiet = FALSE ) ## S3 method for class 'ee.imagecollection.ImageCollection' ee_print( eeobject, ..., time_end = TRUE, img_index = 0, img_band, compression_ratio = 20, clean = FALSE, quiet = FALSE )
eeobject |
Earth Engine Object. Available for: Geometry, Feature, FeatureCollection, Image or ImageCollection. |
... |
ignored |
clean |
Logical. If TRUE, the cache will be cleaned. |
quiet |
Logical. Suppress info message |
f_index |
Numeric. Index of the |
img_band |
Character. Band name of the |
time_end |
Logical. If TRUE, the system:time_end property in ee$Image
is also returned. See |
compression_ratio |
Numeric. Measurement of the relative data size
reduction produced by a data compression algorithm (ignored if |
img_index |
Numeric. Index of the |
A list with the metadata of the Earth Engine object.
Other helper functions:
ee_help()
,
ee_monitoring()
## Not run: library(rgee) ee_Initialize() # Geometry geom <- ee$Geometry$Rectangle(-10,-10,10,10) Map$addLayer(geom) ee_print(geom) # Feature feature <- ee$Feature(geom, list(rgee = "ee_print", data = TRUE)) ee_print(feature) # FeatureCollection featurecollection <- ee$FeatureCollection(feature) ee_print(featurecollection) # Image srtm <- ee$Image("CGIAR/SRTM90_V4") ee_print(srtm) srtm_clip <- ee$Image("CGIAR/SRTM90_V4")$clip(geom) srtm_metadata <- ee_print(srtm_clip) srtm_metadata$img_bands_names # ImageCollection object <- ee$ImageCollection("LANDSAT/LC08/C01/T1_TOA")$ filter(ee$Filter()$eq("WRS_PATH", 44))$ filter(ee$Filter()$eq("WRS_ROW", 34))$ filterDate("2014-03-01", "2014-08-01")$ aside(ee_print) ## End(Not run)
## Not run: library(rgee) ee_Initialize() # Geometry geom <- ee$Geometry$Rectangle(-10,-10,10,10) Map$addLayer(geom) ee_print(geom) # Feature feature <- ee$Feature(geom, list(rgee = "ee_print", data = TRUE)) ee_print(feature) # FeatureCollection featurecollection <- ee$FeatureCollection(feature) ee_print(featurecollection) # Image srtm <- ee$Image("CGIAR/SRTM90_V4") ee_print(srtm) srtm_clip <- ee$Image("CGIAR/SRTM90_V4")$clip(geom) srtm_metadata <- ee_print(srtm_clip) srtm_metadata$img_bands_names # ImageCollection object <- ee$ImageCollection("LANDSAT/LC08/C01/T1_TOA")$ filter(ee$Filter()$eq("WRS_PATH", 44))$ filter(ee$Filter()$eq("WRS_ROW", 34))$ filterDate("2014-03-01", "2014-08-01")$ aside(ee_print) ## End(Not run)
Creates a task to export a FeatureCollection to an EE table asset.
This function is a wrapper around ee$batch$Export$table$toAsset(...)
.
ee_table_to_asset( collection, description = "myExportTableTask", assetId = NULL, overwrite = FALSE )
ee_table_to_asset( collection, description = "myExportTableTask", assetId = NULL, overwrite = FALSE )
collection |
The feature collection to be exported. |
description |
Human-readable name of the task. |
assetId |
The destination asset ID. **kwargs: Holds other keyword arguments that may have been deprecated. |
overwrite |
Logical. If TRUE, the assetId will be overwritten if it exists. |
An unstarted Task that exports the table to Earth Engine Asset.
Other vector export task creator:
ee_table_to_drive()
,
ee_table_to_gcs()
## Not run: library(rgee) library(stars) library(sf) ee_users() ee_Initialize() # Define study area (local -> earth engine) # Communal Reserve Amarakaeri - Peru rlist <- list(xmin = -71.13, xmax = -70.95,ymin = -12.89, ymax = -12.73) ROI <- c(rlist$xmin, rlist$ymin, rlist$xmax, rlist$ymin, rlist$xmax, rlist$ymax, rlist$xmin, rlist$ymax, rlist$xmin, rlist$ymin) ee_ROI <- matrix(ROI, ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() %>% st_sfc() %>% st_set_crs(4326) %>% sf_as_ee() amk_fc <- ee$FeatureCollection( list(ee$Feature(ee_ROI, list(name = "Amarakaeri"))) ) assetid <- paste0(ee_get_assethome(), '/geom_Amarakaeri') task_vector <- ee_table_to_asset( collection = amk_fc, overwrite = TRUE, assetId = assetid ) task_vector$start() ee_monitoring(task_vector) # optional ee_fc <- ee$FeatureCollection(assetid) Map$centerObject(ee_fc) Map$addLayer(ee_fc) ## End(Not run)
## Not run: library(rgee) library(stars) library(sf) ee_users() ee_Initialize() # Define study area (local -> earth engine) # Communal Reserve Amarakaeri - Peru rlist <- list(xmin = -71.13, xmax = -70.95,ymin = -12.89, ymax = -12.73) ROI <- c(rlist$xmin, rlist$ymin, rlist$xmax, rlist$ymin, rlist$xmax, rlist$ymax, rlist$xmin, rlist$ymax, rlist$xmin, rlist$ymin) ee_ROI <- matrix(ROI, ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() %>% st_sfc() %>% st_set_crs(4326) %>% sf_as_ee() amk_fc <- ee$FeatureCollection( list(ee$Feature(ee_ROI, list(name = "Amarakaeri"))) ) assetid <- paste0(ee_get_assethome(), '/geom_Amarakaeri') task_vector <- ee_table_to_asset( collection = amk_fc, overwrite = TRUE, assetId = assetid ) task_vector$start() ee_monitoring(task_vector) # optional ee_fc <- ee$FeatureCollection(assetid) Map$centerObject(ee_fc) Map$addLayer(ee_fc) ## End(Not run)
Creates a task to export a FeatureCollection to Google Drive.
This function is a wrapper around ee$batch$Export$table$toDrive(...)
.
ee_table_to_drive( collection, description = "myExportTableTask", folder = "rgee_backup", fileNamePrefix = NULL, timePrefix = TRUE, fileFormat = NULL, selectors = NULL )
ee_table_to_drive( collection, description = "myExportTableTask", folder = "rgee_backup", fileNamePrefix = NULL, timePrefix = TRUE, fileFormat = NULL, selectors = NULL )
collection |
The feature collection to be exported. |
description |
User-friendly name of the task. |
folder |
The name of a unique folder in your Drive account to export into. Defaults to the root of the drive. |
fileNamePrefix |
The Google Drive filename for the export. Defaults to the name of the task. |
timePrefix |
Add current date and time as a prefix to files to export. |
fileFormat |
The output format: "CSV" (default), "GeoJSON", "KML", "KMZ", "SHP", or "TFRecord". |
selectors |
A list of properties to include in the output, as a list of strings or a comma-separated string. By default, all properties are included. **kwargs: Holds other keyword arguments that may have been deprecated such as 'driveFolder' and 'driveFileNamePrefix'. |
An unstarted Task that exports the table to Google Drive.
Other vector export task creator:
ee_table_to_asset()
,
ee_table_to_gcs()
## Not run: library(rgee) library(stars) library(sf) ee_users() ee_Initialize(drive = TRUE) # Define study area (local -> earth engine) # Communal Reserve Amarakaeri - Peru rlist <- list(xmin = -71.13, xmax = -70.95,ymin = -12.89, ymax = -12.73) ROI <- c(rlist$xmin, rlist$ymin, rlist$xmax, rlist$ymin, rlist$xmax, rlist$ymax, rlist$xmin, rlist$ymax, rlist$xmin, rlist$ymin) ee_ROI <- matrix(ROI, ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() %>% st_sfc() %>% st_set_crs(4326) %>% sf_as_ee() amk_fc <- ee$FeatureCollection( list(ee$Feature(ee_ROI, list(name = "Amarakaeri"))) ) task_vector <- ee_table_to_drive( collection = amk_fc, fileFormat = "GEO_JSON", fileNamePrefix = "geom_Amarakaeri" ) task_vector$start() ee_monitoring(task_vector) # optional ee_drive_to_local(task = task_vector) ## End(Not run)
## Not run: library(rgee) library(stars) library(sf) ee_users() ee_Initialize(drive = TRUE) # Define study area (local -> earth engine) # Communal Reserve Amarakaeri - Peru rlist <- list(xmin = -71.13, xmax = -70.95,ymin = -12.89, ymax = -12.73) ROI <- c(rlist$xmin, rlist$ymin, rlist$xmax, rlist$ymin, rlist$xmax, rlist$ymax, rlist$xmin, rlist$ymax, rlist$xmin, rlist$ymin) ee_ROI <- matrix(ROI, ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() %>% st_sfc() %>% st_set_crs(4326) %>% sf_as_ee() amk_fc <- ee$FeatureCollection( list(ee$Feature(ee_ROI, list(name = "Amarakaeri"))) ) task_vector <- ee_table_to_drive( collection = amk_fc, fileFormat = "GEO_JSON", fileNamePrefix = "geom_Amarakaeri" ) task_vector$start() ee_monitoring(task_vector) # optional ee_drive_to_local(task = task_vector) ## End(Not run)
Creates a task to export a FeatureCollection to Google Cloud Storage.
This function is a wrapper around
ee$batch$Export$table$toCloudStorage(...)
.
ee_table_to_gcs( collection, description = "myExportTableTask", bucket = NULL, fileNamePrefix = NULL, timePrefix = TRUE, fileFormat = NULL, selectors = NULL )
ee_table_to_gcs( collection, description = "myExportTableTask", bucket = NULL, fileNamePrefix = NULL, timePrefix = TRUE, fileFormat = NULL, selectors = NULL )
collection |
The feature collection to be exported. |
description |
User-friendly name of the task. |
bucket |
The name of a Cloud Storage bucket for the export. |
fileNamePrefix |
Cloud Storage object name prefix for the export. Defaults to the name of the task. |
timePrefix |
Prefixes the current date and time to the exported files. |
fileFormat |
The output format: "CSV" (default), "GeoJSON", "KML", "KMZ", "SHP", or "TFRecord". |
selectors |
The list of properties to include in the output, as a list of strings or a comma-separated string. By default, all properties are included. **kwargs: Holds other keyword arguments that may have been deprecated such as 'outputBucket'. |
An unstarted Task that exports the table to Google Cloud Storage.
Other vector export task creator:
ee_table_to_asset()
,
ee_table_to_drive()
## Not run: library(rgee) library(stars) library(sf) ee_users() ee_Initialize(gcs = TRUE) # Define study area (local -> earth engine) # Communal Reserve Amarakaeri - Peru rlist <- list(xmin = -71.13, xmax = -70.95,ymin = -12.89, ymax = -12.73) ROI <- c(rlist$xmin, rlist$ymin, rlist$xmax, rlist$ymin, rlist$xmax, rlist$ymax, rlist$xmin, rlist$ymax, rlist$xmin, rlist$ymin) ee_ROI <- matrix(ROI, ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() %>% st_sfc() %>% st_set_crs(4326) %>% sf_as_ee() amk_fc <- ee$FeatureCollection( list(ee$Feature(ee_ROI, list(name = "Amarakaeri"))) ) task_vector <- ee_table_to_gcs( collection = amk_fc, bucket = "rgee_dev", fileFormat = "SHP", fileNamePrefix = "geom_Amarakaeri" ) task_vector$start() ee_monitoring(task_vector) # optional amk_geom <- ee_gcs_to_local(task = task_vector) plot(sf::read_sf(amk_geom[3]), border = "red", lwd = 10) ## End(Not run)
## Not run: library(rgee) library(stars) library(sf) ee_users() ee_Initialize(gcs = TRUE) # Define study area (local -> earth engine) # Communal Reserve Amarakaeri - Peru rlist <- list(xmin = -71.13, xmax = -70.95,ymin = -12.89, ymax = -12.73) ROI <- c(rlist$xmin, rlist$ymin, rlist$xmax, rlist$ymin, rlist$xmax, rlist$ymax, rlist$xmin, rlist$ymax, rlist$xmin, rlist$ymin) ee_ROI <- matrix(ROI, ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() %>% st_sfc() %>% st_set_crs(4326) %>% sf_as_ee() amk_fc <- ee$FeatureCollection( list(ee$Feature(ee_ROI, list(name = "Amarakaeri"))) ) task_vector <- ee_table_to_gcs( collection = amk_fc, bucket = "rgee_dev", fileFormat = "SHP", fileNamePrefix = "geom_Amarakaeri" ) task_vector$start() ee_monitoring(task_vector) # optional amk_geom <- ee_gcs_to_local(task = task_vector) plot(sf::read_sf(amk_geom[3]), border = "red", lwd = 10) ## End(Not run)
Display the credentials and general info of the initialized user
ee_user_info(quiet = FALSE)
ee_user_info(quiet = FALSE)
quiet |
Logical. Suppress info messages. |
A list with information about the Earth Engine user.
Other session management functions:
ee_Initialize()
,
ee_users()
,
ee_version()
## Not run: library(rgee) ee_Initialize() ee_user_info() ## End(Not run)
## Not run: library(rgee) ee_Initialize() ee_user_info() ## End(Not run)
Display Earth Engine, Google Drive, and Google Cloud Storage Credentials as a table.
ee_users(quiet = FALSE)
ee_users(quiet = FALSE)
quiet |
Logical. Suppress info messages. |
A data.frame with credential information of all users.
Other session management functions:
ee_Initialize()
,
ee_user_info()
,
ee_version()
## Not run: library(rgee) ee_users() ## End(Not run)
## Not run: library(rgee) ee_users() ## End(Not run)
Return metadata of a COG tile server
ee_utils_cog_metadata( resource, visParams, titiler_server = "https://api.cogeo.xyz/" )
ee_utils_cog_metadata( resource, visParams, titiler_server = "https://api.cogeo.xyz/" )
resource |
Character that represents a COG tile server file. |
visParams |
Visualization parameters see "https://api.cogeo.xyz/docs". |
titiler_server |
TiTiler endpoint. Defaults to "https://api.cogeo.xyz/". |
A metadata list for a COG file.
## Not run: library(rgee) server <- "https://s3-us-west-2.amazonaws.com/planet-disaster-data/hurricane-harvey/" file <- "SkySat_Freeport_s03_20170831T162740Z3.tif" resource <- paste0(server, file) visParams <- list(nodata = 0, expression = "B3, B2, B1", rescale = "3000, 13500") ee_utils_cog_metadata(resource, visParams) ## End(Not run)
## Not run: library(rgee) server <- "https://s3-us-west-2.amazonaws.com/planet-disaster-data/hurricane-harvey/" file <- "SkySat_Freeport_s03_20170831T162740Z3.tif" resource <- paste0(server, file) visParams <- list(nodata = 0, expression = "B3, B2, B1", rescale = "3000, 13500") ee_utils_cog_metadata(resource, visParams) ## End(Not run)
Convert an R list into a JSON file in the temp() file
ee_utils_create_json(x)
ee_utils_create_json(x)
x |
List to convert into a JSON file. |
A JSON file saved in a /tmp dir.
## Not run: library(rgee) ee_utils_create_json(list(a=10,b=10)) ## End(Not run)
## Not run: library(rgee) ee_utils_create_json(list(a=10,b=10)) ## End(Not run)
Create a manifest to upload a GeoTIFF to Earth Engine asset folder. The "manifest" is simply a JSON file that describe all the upload parameters. See https://developers.google.com/earth-engine/guides/image_manifest to get more details.
ee_utils_create_manifest_image( gs_uri, assetId, properties = NULL, start_time = "1970-01-01", end_time = "1970-01-01", pyramiding_policy = "MEAN", returnList = FALSE, quiet = FALSE )
ee_utils_create_manifest_image( gs_uri, assetId, properties = NULL, start_time = "1970-01-01", end_time = "1970-01-01", pyramiding_policy = "MEAN", returnList = FALSE, quiet = FALSE )
gs_uri |
Character. GCS full path of the image to upload to Earth Engine assets, e.g. gs://rgee_dev/l8.tif |
assetId |
Character. How to call the file once uploaded to the Earth Engine Asset. e.g. users/datacolecfbf/l8. |
properties |
List. Set of parameters to be set up as properties of the EE object. |
start_time |
Character. Sets the start time property (system:time_start). It could be a number (timestamp) or a date. |
end_time |
Character. Sets the end time property (system:time_end). It could be a number (timestamp) or a date. |
pyramiding_policy |
Character. The pyramid reduction policy to use. |
returnList |
Logical. If TRUE will return the "manifest" as a list. Otherwise, will return a JSON file. |
quiet |
Logical. Suppress info message. |
If returnList
is TRUE, a list otherwise a JSON file.
Other generic upload functions:
ee_utils_create_manifest_table()
,
local_to_gcs()
## Not run: library(rgee) ee_Initialize() tif <- system.file("tif/L7_ETMs.tif", package = "stars") # Return a JSON file ee_utils_create_manifest_image( gs_uri = "gs://rgee_dev/l8.tif", assetId = "users/datacolecfbf/l8" ) # Return a list ee_utils_create_manifest_image( gs_uri = "gs://rgee_dev/l8.tif", assetId = "users/datacolecfbf/l8", returnList = TRUE ) ## End(Not run)
## Not run: library(rgee) ee_Initialize() tif <- system.file("tif/L7_ETMs.tif", package = "stars") # Return a JSON file ee_utils_create_manifest_image( gs_uri = "gs://rgee_dev/l8.tif", assetId = "users/datacolecfbf/l8" ) # Return a list ee_utils_create_manifest_image( gs_uri = "gs://rgee_dev/l8.tif", assetId = "users/datacolecfbf/l8", returnList = TRUE ) ## End(Not run)
Create a manifest to upload a zipped shapefile to Earth Engine assets folder. The "manifest" is simply a JSON file that describe all the upload parameters. See https://developers.google.com/earth-engine/guides/image_manifest to get more details.
ee_utils_create_manifest_table( gs_uri, assetId, start_time = "1970-01-01", end_time = "1970-01-01", properties = NULL, returnList = FALSE, quiet = FALSE )
ee_utils_create_manifest_table( gs_uri, assetId, start_time = "1970-01-01", end_time = "1970-01-01", properties = NULL, returnList = FALSE, quiet = FALSE )
gs_uri |
Character. GCS full path of the table to upload to Earth Engine assets e.g. gs://rgee_dev/nc.zip |
assetId |
Character. How to call the file once uploaded to the Earth Engine Asset. e.g. users/datacolecfbf/nc. |
start_time |
Character. Sets the start time property (system:time_start). It could be a number (timestamp) or a date. |
end_time |
Character. Sets the end time property (system:time_end). It could be a number (timestamp) or a date. |
properties |
List. Set of parameters to be set up as properties of the EE object. |
returnList |
Logical. If TRUE will return the "manifest" as a list otherwise will return a JSON file. |
quiet |
Logical. Suppress info message. |
If returnList
is TRUE, a list otherwise a JSON file.
Other generic upload functions:
ee_utils_create_manifest_image()
,
local_to_gcs()
## Not run: library(rgee) library(sf) ee_Initialize(gcs = TRUE) x <- st_read(system.file("shape/nc.shp", package = "sf")) shp_dir <- sprintf("%s.shp", tempfile()) geozip_dir <- ee_utils_shp_to_zip(x, shp_dir) # Return a JSON file manifest <- ee_utils_create_manifest_table( gs_uri = "gs://rgee_dev/nc.zip", assetId = "users/datacolecfbf/nc" ) # Return a list ee_utils_create_manifest_table( gs_uri = "gs://rgee_dev/nc.zip", assetId = "users/datacolecfbf/nc", returnList = TRUE ) ## End(Not run)
## Not run: library(rgee) library(sf) ee_Initialize(gcs = TRUE) x <- st_read(system.file("shape/nc.shp", package = "sf")) shp_dir <- sprintf("%s.shp", tempfile()) geozip_dir <- ee_utils_shp_to_zip(x, shp_dir) # Return a JSON file manifest <- ee_utils_create_manifest_table( gs_uri = "gs://rgee_dev/nc.zip", assetId = "users/datacolecfbf/nc" ) # Return a list ee_utils_create_manifest_table( gs_uri = "gs://rgee_dev/nc.zip", assetId = "users/datacolecfbf/nc", returnList = TRUE ) ## End(Not run)
Search into the Earth Engine Data Catalog
ee_utils_dataset_display(ee_search_dataset)
ee_utils_dataset_display(ee_search_dataset)
ee_search_dataset |
Character that represents the EE dataset ID. |
No return value, called for displaying the Earth Engine dataset in the browser.
## Not run: library(rgee) ee_datasets <- c("WWF/HydroSHEDS/15DIR", "WWF/HydroSHEDS/03DIR") ee_utils_dataset_display(ee_datasets) ## End(Not run)
## Not run: library(rgee) ee_datasets <- c("WWF/HydroSHEDS/15DIR", "WWF/HydroSHEDS/03DIR") ee_utils_dataset_display(ee_datasets) ## End(Not run)
Gets the value of a future or the values of all elements (including futures) in a container such as a list, an environment, or a list environment. If one or more futures is unresolved, then this function blocks until all queried futures are resolved.
ee_utils_future_value(future, stdout = TRUE, signal = TRUE, ...)
ee_utils_future_value(future, stdout = TRUE, signal = TRUE, ...)
future |
x A Future, an environment, a list, or a list environment. |
stdout |
If TRUE, standard output captured while resolving futures is relayed, otherwise not. |
signal |
If TRUE, conditions captured while resolving futures are relayed, otherwise not. |
... |
All arguments used by the S3 methods. |
value()
of a Future object returns the value of the future, which can
be any type of R object.
value()
of a list, an environment, or a list environment returns an
object with the same number of elements and of the same class.
Names and dimension attributes are preserved, if available.
All future elements are replaced by their corresponding value()
values.
For all other elements, the existing object is kept as-is.
If signal
is TRUE and one of the futures produces an error, then
that error is produced.
Henrik Bengtsson https://github.com/HenrikBengtsson/
Convert EPSG, ESRI or SR-ORG code into a OGC WKT
ee_utils_get_crs(code)
ee_utils_get_crs(code)
code |
The projection code. |
A character which represents the same projection in WKT2 string.
## Not run: library(rgee) ee_utils_get_crs("SR-ORG:6864") ee_utils_get_crs("EPSG:4326") ee_utils_get_crs("ESRI:37002") ## End(Not run)
## Not run: library(rgee) ee_utils_get_crs("SR-ORG:6864") ee_utils_get_crs("EPSG:4326") ee_utils_get_crs("ESRI:37002") ## End(Not run)
Convert between Python and R objects
ee_utils_py_to_r(x)
ee_utils_py_to_r(x)
x |
A python object |
An R object
Other ee_utils functions:
ee_utils_pyfunc()
,
ee_utils_shp_to_zip()
This function could wrap an R function in a Python function with the same signature. Note that the signature of the R function must not contain esoteric Python-incompatible constructs.
ee_utils_pyfunc(f)
ee_utils_pyfunc(f)
f |
An R function |
A Python function that calls the R function f
with the same
signature.
py_func
has been renamed to ee_utils_pyfunc
just to maintain the rgee functions name's style. All recognition
for this function must always be given to reticulate.
Yuan Tang and J.J. Allaire
Other ee_utils functions:
ee_utils_py_to_r()
,
ee_utils_shp_to_zip()
## Not run: library(rgee) ee_Initialize() # Earth Engine List ee_SimpleList <- ee$List$sequence(0, 12) ee_NewList <- ee_SimpleList$map( ee_utils_pyfunc( function(x) { ee$Number(x)$add(x) } ) ) ee_NewList$getInfo() # Earth Engine ImageCollection constant1 <- ee$Image(1) constant2 <- ee$Image(2) ee_ic <- ee$ImageCollection(c(constant2, constant1)) ee_newic <- ee_ic$map( ee_utils_pyfunc( function(x) ee$Image(x)$add(x) ) ) ee_newic$mean()$getInfo()$type ## End(Not run)
## Not run: library(rgee) ee_Initialize() # Earth Engine List ee_SimpleList <- ee$List$sequence(0, 12) ee_NewList <- ee_SimpleList$map( ee_utils_pyfunc( function(x) { ee$Number(x)$add(x) } ) ) ee_NewList$getInfo() # Earth Engine ImageCollection constant1 <- ee$Image(1) constant2 <- ee$Image(2) ee_ic <- ee$ImageCollection(c(constant2, constant1)) ee_newic <- ee_ic$map( ee_utils_pyfunc( function(x) ee$Image(x)$add(x) ) ) ee_newic$mean()$getInfo()$type ## End(Not run)
Copy SaK in the ~/.config/earthengine/$USER.
ee_utils_sak_copy(sakfile, users = NULL, delete = FALSE, quiet = FALSE)
ee_utils_sak_copy(sakfile, users = NULL, delete = FALSE, quiet = FALSE)
sakfile |
Character. SaK filename. If missing, the SaK of the first user is used. |
users |
Character. The user related to the SaK file. A SaK file can be related to multiple users. |
delete |
Logical. If TRUE, the SaK filename is deleted after copy. |
quiet |
Logical. Suppress info message |
## Not run: library(rgee) ee_Initialize() # sakfile <- "/home/rgee_dev/sak_file.json" ## Copy sakfile to the users 'csaybar' and 'ndef' # ee_utils_sak_copy(sakfile = sakfile, users = c("csaybar", "ndef")) # # Copy the sakfile of the user1 to the user2 and user3. # ee_utils_sak_copy(users = c("csaybar", "ndef", "ryali93")) ## End(Not run)
## Not run: library(rgee) ee_Initialize() # sakfile <- "/home/rgee_dev/sak_file.json" ## Copy sakfile to the users 'csaybar' and 'ndef' # ee_utils_sak_copy(sakfile = sakfile, users = c("csaybar", "ndef")) # # Copy the sakfile of the user1 to the user2 and user3. # ee_utils_sak_copy(users = c("csaybar", "ndef", "ryali93")) ## End(Not run)
Validate a Service account key (SaK). local_to_gcs, raster_as_ee, stars_as_ee, and sf_as_ee(via = "gcs_to_asset", ...) need that the SaK have privileges to write/read objects in a GCS bucket.
ee_utils_sak_validate(sakfile, bucket, quiet = FALSE)
ee_utils_sak_validate(sakfile, bucket, quiet = FALSE)
sakfile |
Character. SaK filename. |
bucket |
Character. Name of the GCS bucket. If bucket is not set,
rgee will tries to create a bucket using |
quiet |
Logical. Suppress info message |
## Not run: library(rgee) ee_Initialize(gcs = TRUE) # Check a specific SaK sakfile <- "/home/rgee_dev/sak_file.json" ee_utils_sak_validate(sakfile, bucket = "rgee_dev") # Check the SaK for the current user ee_utils_sak_validate() ## End(Not run)
## Not run: library(rgee) ee_Initialize(gcs = TRUE) # Check a specific SaK sakfile <- "/home/rgee_dev/sak_file.json" ee_utils_sak_validate(sakfile, bucket = "rgee_dev") # Check the SaK for the current user ee_utils_sak_validate() ## End(Not run)
Create a zip file from an sf object
ee_utils_shp_to_zip( x, filename, SHP_EXTENSIONS = c("dbf", "prj", "shp", "shx") )
ee_utils_shp_to_zip( x, filename, SHP_EXTENSIONS = c("dbf", "prj", "shp", "shx") )
x |
sf object |
filename |
data source name |
SHP_EXTENSIONS |
file extension of the files to save into the zip file. By default: "dbf", "prj", "shp", "shx". |
Character. The full path of the created zip file.
Other ee_utils functions:
ee_utils_py_to_r()
,
ee_utils_pyfunc()
## Not run: library(rgee) library(sf) ee_Initialize(gcs = TRUE) # Create sf object nc <- st_read(system.file("shape/nc.shp", package="sf")) zipfile <- ee_utils_shp_to_zip(nc) ## End(Not run)
## Not run: library(rgee) library(sf) ee_Initialize(gcs = TRUE) # Create sf object nc <- st_read(system.file("shape/nc.shp", package="sf")) zipfile <- ee_utils_shp_to_zip(nc) ## End(Not run)
Earth Engine API version
ee_version()
ee_version()
Character. Earth Engine Python API version used to build rgee.
Other session management functions:
ee_Initialize()
,
ee_user_info()
,
ee_users()
Pass an Earth Engine date object to R
eedate_to_rdate(ee_date, timestamp = FALSE)
eedate_to_rdate(ee_date, timestamp = FALSE)
ee_date |
ee$date object (ee$Date) |
timestamp |
Logical. If TRUE, return the date in milliseconds from the Unix Epoch (1970-01-01 00:00:00 UTC). Otherwise, return the date as a POSIXct object. By default FALSE. |
eedate_to_rdate
is essential to avoid potential errors that
might appear when users need to retrieve dates. Currently,
R integer only supports 32 bit signed (such integers can only
count up to about 2 billion). This range is notably insufficient for dealing
with GEE date objects represented by timestamps in milliseconds since the
UNIX epoch. eedate_to_rdate
uses Python in the backend to obtain the
date and convert it in float before exporting to R.
eedate_to_rdate
will return either a numeric timestamp or
a POSIXct object depending on the timestamp
argument.
Other date functions:
ee_get_date_ic()
,
ee_get_date_img()
,
rdate_to_eedate()
## Not run: library(rgee) ee_Initialize() eeDate <- ee$Date$fromYMD(2010,1,1) eedate_to_rdate(eeDate,timestamp = TRUE) # good eeDate$getInfo()$value # bad ## End(Not run)
## Not run: library(rgee) ee_Initialize() eeDate <- ee$Date$fromYMD(2010,1,1) eedate_to_rdate(eeDate,timestamp = TRUE) # good eeDate$getInfo()$value # bad ## End(Not run)
Move a GeoTIFF image from GCS to their EE assets
gcs_to_ee_image( manifest, overwrite = FALSE, command_line_tool_path = NULL, quiet = FALSE )
gcs_to_ee_image( manifest, overwrite = FALSE, command_line_tool_path = NULL, quiet = FALSE )
manifest |
Character. Manifest upload file. See |
overwrite |
Logical. If TRUE, the assetId will be overwritten if it exists. |
command_line_tool_path |
Character. Path to the Earth Engine command line
tool (CLT). If NULL, rgee assumes that CLT is set in the system PATH.
(ignore if |
quiet |
Logical. Suppress info message. |
Character. The Earth Engine asset ID.
## Not run: library(rgee) library(stars) ee_Initialize("csaybar", gcs = TRUE) # 1. Read GeoTIFF file and create a output filename tif <- system.file("tif/L7_ETMs.tif", package = "stars") x <- read_stars(tif) assetId <- sprintf("%s/%s",ee_get_assethome(),'stars_l7') # 2. From local to gcs gs_uri <- local_to_gcs( x = tif, bucket = 'rgee_dev' # Insert your own bucket here! ) # 3. Create an Image Manifest manifest <- ee_utils_create_manifest_image(gs_uri, assetId) # 4. From GCS to Earth Engine gcs_to_ee_image( manifest = manifest, overwrite = TRUE ) # OPTIONAL: Monitoring progress ee_monitoring() # OPTIONAL: Display results ee_stars_01 <- ee$Image(assetId) ee_stars_01$bandNames()$getInfo() Map$centerObject(ee_stars_01) Map$addLayer(ee_stars_01, list(min = 0, max = 255, bands = c("b3", "b2", "b1"))) ## End(Not run)
## Not run: library(rgee) library(stars) ee_Initialize("csaybar", gcs = TRUE) # 1. Read GeoTIFF file and create a output filename tif <- system.file("tif/L7_ETMs.tif", package = "stars") x <- read_stars(tif) assetId <- sprintf("%s/%s",ee_get_assethome(),'stars_l7') # 2. From local to gcs gs_uri <- local_to_gcs( x = tif, bucket = 'rgee_dev' # Insert your own bucket here! ) # 3. Create an Image Manifest manifest <- ee_utils_create_manifest_image(gs_uri, assetId) # 4. From GCS to Earth Engine gcs_to_ee_image( manifest = manifest, overwrite = TRUE ) # OPTIONAL: Monitoring progress ee_monitoring() # OPTIONAL: Display results ee_stars_01 <- ee$Image(assetId) ee_stars_01$bandNames()$getInfo() Map$centerObject(ee_stars_01) Map$addLayer(ee_stars_01, list(min = 0, max = 255, bands = c("b3", "b2", "b1"))) ## End(Not run)
Move a zipped shapefile from GCS to their EE Assets
gcs_to_ee_table( manifest, command_line_tool_path = NULL, overwrite = FALSE, quiet = FALSE )
gcs_to_ee_table( manifest, command_line_tool_path = NULL, overwrite = FALSE, quiet = FALSE )
manifest |
Character. manifest upload file. See |
command_line_tool_path |
Character. Path to the Earth Engine command line
tool (CLT). If NULL, rgee assumes that CLT is set in the system PATH.
(ignore if |
overwrite |
Logical. If TRUE, the assetId will be overwritten if it exists. |
quiet |
Logical. Suppress info message. |
Character. The Earth Engine asset ID.
## Not run: library(rgee) library(sf) ee_Initialize(gcs = TRUE) # 1. Read dataset and create a output filename x <- st_read(system.file("shape/nc.shp", package = "sf")) assetId <- sprintf("%s/%s", ee_get_assethome(), 'toy_poly_gcs') # 2. From sf to .shp shp_dir <- sprintf("%s.shp", tempfile()) geozip_dir <- ee_utils_shp_to_zip(x, shp_dir) # 3. From local to gcs gcs_filename <- local_to_gcs( x = geozip_dir, bucket = "rgee_dev" # Insert your own bucket here! ) # 4. Create Table Manifest manifest <- ee_utils_create_manifest_table( gs_uri = gcs_filename, assetId = assetId ) # 5. From GCS to Earth Engine ee_nc <- gcs_to_ee_table(manifest, overwrite = TRUE) ee_monitoring() Map$addLayer(ee$FeatureCollection(ee_nc)) ## End(Not run)
## Not run: library(rgee) library(sf) ee_Initialize(gcs = TRUE) # 1. Read dataset and create a output filename x <- st_read(system.file("shape/nc.shp", package = "sf")) assetId <- sprintf("%s/%s", ee_get_assethome(), 'toy_poly_gcs') # 2. From sf to .shp shp_dir <- sprintf("%s.shp", tempfile()) geozip_dir <- ee_utils_shp_to_zip(x, shp_dir) # 3. From local to gcs gcs_filename <- local_to_gcs( x = geozip_dir, bucket = "rgee_dev" # Insert your own bucket here! ) # 4. Create Table Manifest manifest <- ee_utils_create_manifest_table( gs_uri = gcs_filename, assetId = assetId ) # 5. From GCS to Earth Engine ee_nc <- gcs_to_ee_table(manifest, overwrite = TRUE) ee_monitoring() Map$addLayer(ee$FeatureCollection(ee_nc)) ## End(Not run)
Upload images or tables to Google Cloud Storage
local_to_gcs(x, bucket = NULL, predefinedAcl = "bucketLevel", quiet = FALSE)
local_to_gcs(x, bucket = NULL, predefinedAcl = "bucketLevel", quiet = FALSE)
x |
Character. filename. |
bucket |
bucket name you are uploading to |
predefinedAcl |
Specify user access to object. Passed to
|
quiet |
Logical. Suppress info message. |
Character that represents the full path of the object in the GCS bucket specified.
Other generic upload functions:
ee_utils_create_manifest_image()
,
ee_utils_create_manifest_table()
## Not run: library(rgee) library(stars) # Initialize a specific Earth Engine account and # Google Cloud Storage credentials ee_Initialize(gcs = TRUE) # # Define an image. tif <- system.file("tif/L7_ETMs.tif", package = "stars") local_to_gcs(x = tif, bucket = 'rgee_dev') ## End(Not run)
## Not run: library(rgee) library(stars) # Initialize a specific Earth Engine account and # Google Cloud Storage credentials ee_Initialize(gcs = TRUE) # # Define an image. tif <- system.file("tif/L7_ETMs.tif", package = "stars") local_to_gcs(x = tif, bucket = 'rgee_dev') ## End(Not run)
Create interactive visualizations of spatial EE objects
(ee$FeatureCollection, ee$ImageCollection, ee$Geometry, ee$Feature, and
ee$Image.) using leaflet
in the backend.
Map
Map
An object of class environment with the following functions:
addLayer(eeObject, visParams, name = NULL, shown = TRUE,
opacity = 1, titiler_viz_convert = TRUE,
titiler_server = "https://api.cogeo.xyz/"): Adds a given EE object to the
map as a layer.
eeObject: The object to add to the interactive map.
visParams: List of parameters for visualization.
See details.
name: The name of the layer.
shown: A flag indicating whether the
layer should be on by default.
opacity: The layer's opacity is represented as a number
between 0 and 1. Defaults to 1.
titiler_viz_convert: Logical. If it is TRUE, Map$addLayer
will transform the visParams to titiler style. Ignored if eeObject is
not a COG file.
titiler_server: TiTiler endpoint. Defaults to "https://api.cogeo.xyz/".
addLayers(eeObject, visParams, name = NULL, shown = TRUE,
opacity = 1): Adds a given ee$ImageCollection to the map
as multiple layers.
eeObject: The ee$ImageCollection to add to the interactive map.
visParams: List of parameters for visualization.
See details.
name: The name of layers.
shown: A flag indicating whether
layers should be on by default.
opacity: The layer's opacity is represented as a number
between 0 and 1. Defaults to 1.
nmax: Numeric. The maximum number of images to display. By default 5.
addLegend(visParams, name = "Legend", position = c("bottomright",
"topright", "bottomleft", "topleft"), color_mapping= "numeric", opacity = 1, ...):
Adds a given ee$ImageCollection to the map as multiple layers.
visParams: List of parameters for visualization.
name: The title of the legend.
position: Character. The position of the legend. By default bottomright.
color_mapping: Map data values (numeric or factor/character) to
colors according to a given palette. Use "numeric" ("discrete") for continuous
(categorical) data. For display characters use "character" and add to visParams
the element "values" containing the desired character names.
opacity: The legend's opacity is represented as a number between 0
and 1. Defaults to 1.
...: Extra legend creator arguments. See addLegend.
setCenter(lon = 0, lat = 0, zoom = NULL): Centers the map view at the given coordinates with the given zoom level. If no zoom level is provided, it uses 1 by default.
lon: The longitude of the center, in degrees.
lat: The latitude of the center, in degrees.
zoom: The zoom level, from 1 to 24.
setZoom(zoom = NULL): Sets the zoom level of the map.
zoom: The zoom level, from 1 to 24.
centerObject(eeObject, zoom = NULL, maxError = ee$ErrorMargin(1)): Centers the map view on a given object. If no zoom level is provided, it will be predicted according to the bounds of the Earth Engine object specified.
eeObject: EE object.
zoom: The zoom level, from 1 to 24.
maxError: Max error when input image must be reprojected to an explicitly requested result projection or geodesic state.
Map
use the Earth Engine method
getMapId to fetch and return an ID dictionary being used to create
layers in a leaflet
object. Users can specify visualization
parameters to Map$addLayer by using the visParams argument. Each Earth
Engine spatial object has a specific format. For
ee$Image
, the
parameters available are:
Parameter | Description | Type |
bands | Comma-delimited list of three band (RGB) | list |
min | Value(s) to map to 0 | number or list of three numbers, one for each band |
max | Value(s) to map to 1 | number or list of three numbers, one for each band |
gain | Value(s) by which to multiply each pixel value | number or list of three numbers, one for each band |
bias | Value(s) to add to each Digital Number value | number or list of three numbers, one for each band |
gamma | Gamma correction factor(s) | number or list of three numbers, one for each band |
palette | List of CSS-style color strings (single-band only) | comma-separated list of hex strings |
opacity | The opacity of the layer (from 0 to 1) | number |
If you add an ee$Image
to Map$addLayer without any additional
parameters, by default it assigns the first three bands to red,
green, and blue bands, respectively. The default stretch is based on the
min-max range. On the other hand, the available parameters for
ee$Geometry
, ee$Feature
, and ee$FeatureCollection
are:
color: A hex string in the format RRGGBB specifying the color to use for drawing the features. By default #000000.
pointRadius: The radius of the point markers. By default 3.
strokeWidth: The width of lines and polygon borders. By default 3.
Object of class leaflet, with the following extra parameters: tokens, name, opacity, shown, min, max, palette, and legend. Use the $ method to retrieve the data (e.g. m$rgee$min).
## Not run: library(rgee) library(sf) ee_Initialize() # Case 1: Geometry* geom1 <- ee$Geometry$Point(list(-73.53, -15.75)) Map$centerObject(geom1, zoom = 8) m1 <- Map$addLayer( eeObject = geom1, visParams = list( pointRadius = 10, color = "FF0000" ), name = "Geometry-Arequipa" ) # Case 2: Feature feature_arq <- ee$Feature(ee$Geometry$Point(list(-72.53, -15.75))) m2 <- Map$addLayer( eeObject = feature_arq, name = "Feature-Arequipa" ) m2 + m1 # Case 4: Image image <- ee$Image("LANDSAT/LC08/C01/T1/LC08_044034_20140318") Map$centerObject(image) m4 <- Map$addLayer( eeObject = image, visParams = list( bands = c("B4", "B3", "B2"), max = 10000 ), name = "SF" ) # Case 5: ImageCollection nc <- st_read(system.file("shape/nc.shp", package = "sf")) %>% st_transform(4326) %>% sf_as_ee() ee_s2 <- ee$ImageCollection("COPERNICUS/S2")$ filterDate("2016-01-01", "2016-01-31")$ filterBounds(nc) ee_s2 <- ee$ImageCollection(ee_s2$toList(2)) Map$centerObject(nc$geometry()) m5 <- Map$addLayers(ee_s2) m5 # Case 6: Map comparison image <- ee$Image("LANDSAT/LC08/C01/T1/LC08_044034_20140318") Map$centerObject(image) m_ndvi <- Map$addLayer( eeObject = image$normalizedDifference(list("B5", "B4")), visParams = list(min = 0, max = 0.7), name = "SF_NDVI" ) + Map$addLegend(list(min = 0, max = 0.7), name = "NDVI", position = "bottomright", bins = 4) m6 <- m4 | m_ndvi m6 # Case 7: digging up the metadata m6$rgee$tokens m5$rgee$tokens # Case 8: COG support # See parameters here: https://api.cogeo.xyz/docs server <- "https://storage.googleapis.com/pdd-stac/disasters/" file <- "hurricane-harvey/0831/20170831_172754_101c_3B_AnalyticMS.tif" resource <- paste0(server, file) visParams <- list(bands = c("B3", "B2", "B1"), min = 3000, max = 13500, nodata = 0) Map$centerObject(resource) Map$addLayer(resource, visParams = visParams, shown = TRUE) ## End(Not run)
## Not run: library(rgee) library(sf) ee_Initialize() # Case 1: Geometry* geom1 <- ee$Geometry$Point(list(-73.53, -15.75)) Map$centerObject(geom1, zoom = 8) m1 <- Map$addLayer( eeObject = geom1, visParams = list( pointRadius = 10, color = "FF0000" ), name = "Geometry-Arequipa" ) # Case 2: Feature feature_arq <- ee$Feature(ee$Geometry$Point(list(-72.53, -15.75))) m2 <- Map$addLayer( eeObject = feature_arq, name = "Feature-Arequipa" ) m2 + m1 # Case 4: Image image <- ee$Image("LANDSAT/LC08/C01/T1/LC08_044034_20140318") Map$centerObject(image) m4 <- Map$addLayer( eeObject = image, visParams = list( bands = c("B4", "B3", "B2"), max = 10000 ), name = "SF" ) # Case 5: ImageCollection nc <- st_read(system.file("shape/nc.shp", package = "sf")) %>% st_transform(4326) %>% sf_as_ee() ee_s2 <- ee$ImageCollection("COPERNICUS/S2")$ filterDate("2016-01-01", "2016-01-31")$ filterBounds(nc) ee_s2 <- ee$ImageCollection(ee_s2$toList(2)) Map$centerObject(nc$geometry()) m5 <- Map$addLayers(ee_s2) m5 # Case 6: Map comparison image <- ee$Image("LANDSAT/LC08/C01/T1/LC08_044034_20140318") Map$centerObject(image) m_ndvi <- Map$addLayer( eeObject = image$normalizedDifference(list("B5", "B4")), visParams = list(min = 0, max = 0.7), name = "SF_NDVI" ) + Map$addLegend(list(min = 0, max = 0.7), name = "NDVI", position = "bottomright", bins = 4) m6 <- m4 | m_ndvi m6 # Case 7: digging up the metadata m6$rgee$tokens m5$rgee$tokens # Case 8: COG support # See parameters here: https://api.cogeo.xyz/docs server <- "https://storage.googleapis.com/pdd-stac/disasters/" file <- "hurricane-harvey/0831/20170831_172754_101c_3B_AnalyticMS.tif" resource <- paste0(server, file) visParams <- list(bands = c("B3", "B2", "B1"), min = 3000, max = 13500, nodata = 0) Map$centerObject(resource) Map$addLayer(resource, visParams = visParams, shown = TRUE) ## End(Not run)
EarthEngineMap + EarthEngineMap; adds data from the second map to the first
EarthEngineMap | EarthEngineMap provides a slider in the middle to compare two maps.
## S3 method for class 'EarthEngineMap' e1 + e2 ## S3 method for class 'EarthEngineMap' e1 | e2
## S3 method for class 'EarthEngineMap' e1 + e2 ## S3 method for class 'EarthEngineMap' e1 | e2
e1 |
an EarthEngineMap object. |
e2 |
an EarthEngineMap object. |
tim-salabim. Adapted from mapview code.
print Earth Engine object
## S3 method for class 'ee.computedobject.ComputedObject' print(x, ..., type = getOption("rgee.print.option"))
## S3 method for class 'ee.computedobject.ComputedObject' print(x, ..., type = getOption("rgee.print.option"))
x |
Earth Engine spatial object. |
... |
ignored |
type |
Character. What to show about the x object?. Three options are supported: "json", "simply", "ee_print". By default "simply". |
No return value, called for displaying Earth Engine objects.
Create interactive visualizations of spatial EE objects
(ee$Geometry, ee$Image, ee$Feature, and ee$FeatureCollection)
using leaflet
.
R6Map
uses the Earth Engine method
getMapId to fetch and return an ID dictionary used to create
layers in a leaflet
object. Users can specify visualization
parameters to Map$addLayer by using the visParams argument. Each Earth
Engine spatial object has a specific format. For
ee$Image
, the
parameters available are:
Parameter | Description | Type |
bands | Comma-delimited list of three band (RGB) | list |
min | Value(s) to map to 0 | number or list of three numbers, one for each band |
max | Value(s) to map to 1 | number or list of three numbers, one for each band |
gain | Value(s) by which to multiply each pixel value | number or list of three numbers, one for each band |
bias | Value(s) to add to each Digital Number value | number or list of three numbers, one for each band |
gamma | Gamma correction factor(s) | number or list of three numbers, one for each band |
palette | List of CSS-style color strings (single-band only) | comma-separated list of hex strings |
opacity | The opacity of the layer (from 0 to 1) | number |
If you add an ee$Image
to Map$addLayer without any additional
parameters. By default it assigns the first three bands to red,
green, and blue bands, respectively. The default stretch is based on the
min-max range. On the other hand, the available parameters for
ee$Geometry
, ee$Feature
, and ee$FeatureCollection
are:
color: A hex string in the format RRGGBB specifying the color to use for drawing the features. By default #000000.
pointRadius: The radius of the point markers. By default 3.
strokeWidth: The width of lines and polygon borders. By default 3.
Object of class leaflet
and EarthEngineMap
, with the
following extra parameters: tokens, name, opacity, shown, min, max, palette,
position, and legend. Use the $ method to retrieve the data (e.g., m$rgee$min).
lon
The longitude of the center, in degrees.
lat
The latitude of the center, in degrees.
zoom
The zoom level, from 1 to 24.
save_maps
Should R6Map
save the previous maps?. If TRUE, Map
will work in an OOP style. Otherwise it will be a functional programming
style.
previous_map_left
Container on maps in the left side.
previous_map_right
Container on maps in the right side.
new()
Constructor of R6Map.
R6Map$new(lon = 0, lat = 0, zoom = 1, save_maps = TRUE)
lon
The longitude of the center, in degrees. By default -76.942478.
lat
The latitude of the center, in degrees. By default -12.172116.
zoom
The zoom level, from 1 to 24. By default 18.
save_maps
Should R6Map
save previous maps?.
A new EarthEngineMap
object.
reset()
Reset to initial arguments.
R6Map$reset(lon = 0, lat = 0, zoom = 1, save_maps = TRUE)
lon
The longitude of the center, in degrees. By default -76.942478.
lat
The latitude of the center, in degrees. By default -12.172116.
zoom
The zoom level, from 1 to 24. By default 18.
save_maps
Should R6Map
save previous maps?.
A new EarthEngineMap
object.
\dontrun{ library(rgee) ee_Initialize() # Load an Image image <- ee$Image("LANDSAT/LC08/C01/T1/LC08_044034_20140318") # Create Map <- R6Map$new() Map$centerObject(image) # Simple display: Map just will Map$addLayer( eeObject = image, visParams = list(min=0, max = 10000, bands = c("B4", "B3", "B2")), name = "l8_01" ) Map # display map Map$reset() # Reset arguments Map }
print()
Display a EarthEngineMap
object.
R6Map$print()
An EarthEngineMap
object.
setCenter()
Centers the map view at the given coordinates with the given zoom level. If no zoom level is provided, it uses 10 by default.
R6Map$setCenter(lon = 0, lat = 0, zoom = 10)
lon
The longitude of the center, in degrees. By default -76.942478.
lat
The latitude of the center, in degrees. By default -12.172116.
zoom
The zoom level, from 1 to 24. By default 18.
No return value, called to set initial coordinates and zoom.
\dontrun{ library(rgee) ee_Initialize() Map <- R6Map$new() Map$setCenter(lon = -76, lat = 0, zoom = 5) Map # Map$lat # Map$lon # Map$zoom }
setZoom()
Sets the zoom level of the map.
R6Map$setZoom(zoom = 10)
zoom
The zoom level, from 1 to 24. By default 10.
No return value, called to set zoom.
\dontrun{ library(rgee) ee_Initialize() Map <- R6Map$new() Map$setZoom(zoom = 4) Map # Map$lat # Map$lon # Map$zoom }
centerObject()
Centers the map view on a given object. If no zoom level is provided, it will be predicted according to the bounds of the Earth Engine object specified.
R6Map$centerObject( eeObject, zoom = NULL, maxError = ee$ErrorMargin(1), titiler_server = "https://api.cogeo.xyz/" )
eeObject
Earth Engine spatial object.
zoom
The zoom level, from 1 to 24. By default NULL.
maxError
Max error when input image must be reprojected to an explicitly requested result projection or geodesic state.
titiler_server
TiTiler endpoint. Defaults to "https://api.cogeo.xyz/".
No return value, called to set zoom.
\dontrun{ library(rgee) ee_Initialize() Map <- R6Map$new() image <- ee$Image("LANDSAT/LC08/C01/T1/LC08_044034_20140318") Map$centerObject(image) Map }
addLayer()
Adds a given Earth Engine spatial object to the map as a layer
R6Map$addLayer( eeObject, visParams = NULL, name = NULL, shown = TRUE, opacity = 1, position = NULL, titiler_viz_convert = TRUE, titiler_server = "https://api.cogeo.xyz/" )
eeObject
The Earth Engine spatial object to display in the interactive map.
visParams
List of parameters for visualization. See details.
name
The name of layers.
shown
A flag indicating whether layers should be on by default.
opacity
The layer's opacity is represented as a number between 0 and 1. Defaults to 1.
position
Character. Activate panel creation. If "left" the map will be displayed in the left panel. Otherwise, if it is "right" the map will be displayed in the right panel. By default NULL (No panel will be created).
titiler_viz_convert
Logical. If it is TRUE, Map$addLayer will transform the visParams to titiler style. Ignored if eeObject is not a COG file.
titiler_server
TiTiler endpoint. Defaults to "https://api.cogeo.xyz/".
An EarthEngineMap
object.
\dontrun{ library(rgee) ee_Initialize() # Load an Image image <- ee$Image("LANDSAT/LC08/C01/T1/LC08_044034_20140318") # Create Map <- R6Map$new() Map$centerObject(image) # Simple display: Map just will Map$addLayer( eeObject = image, visParams = list(min=0, max = 10000, bands = c("B4", "B3", "B2")), name = "l8_01" ) Map$addLayer( eeObject = image, visParams = list(min=0, max = 20000, bands = c("B4", "B3", "B2")), name = "l8_02" ) # Simple display: Map just will (if the position is not specified it will # be saved on the right side) Map$reset() # Reset Map to the initial arguments. Map$centerObject(image) Map$addLayer( eeObject = image, visParams = list(min=0, max=10000, bands = c("B4", "B3", "B2")), name = "l8_left", position = "left" ) Map$addLayer( eeObject = image, visParams = list(min=0, max=20000, bands = c("B4", "B3", "B2")), name = "l8_right" ) Map$reset() }
addLayers()
Adds a given ee$ImageCollection to the map as multiple layers.
R6Map$addLayers( eeObject, visParams = NULL, nmax = 5, name = NULL, shown = TRUE, position = NULL, opacity = 1 )
eeObject
ee$ImageCollection to display in the interactive map.
visParams
List of parameters for visualization. See details.
nmax
Numeric. The maximum number of images to display. By default 5.
name
The name of layers.
shown
A flag indicating whether layers should be on by default.
position
Character. Activate panel creation. If "left" the map will be displayed in the left panel. Otherwise, if it is "right" the map will be displayed in the right panel. By default NULL (No panel will be created).
opacity
The layer's opacity is represented as a number between 0 and 1. Defaults to 1.
A EarthEngineMap
object.
\dontrun{ library(sf) library(rgee) ee_Initialize() Map <- R6Map$new() nc <- st_read(system.file("shape/nc.shp", package = "sf")) %>% st_transform(4326) %>% sf_as_ee() ee_s2 <- ee$ImageCollection("COPERNICUS/S2")$ filterDate("2016-01-01", "2016-01-31")$ filterBounds(nc) ee_s2 <- ee$ImageCollection(ee_s2$toList(2)) Map$centerObject(nc$geometry()) Map$addLayers(eeObject = ee_s2,position = "right") # digging up the metadata Map$previous_map_right$rgee$tokens Map$reset() }
addLegend()
Adds a color legend to an EarthEngineMap.
R6Map$addLegend( visParams, name = "Legend", position = c("bottomright", "topright", "bottomleft", "topleft"), color_mapping = "numeric", opacity = 1, ... )
visParams
List of parameters for visualization.
name
The title of the legend.
position
Character. The position of the legend. By default bottomright.
color_mapping
Map data values (numeric or factor/character) to colors according to a given palette. Use "numeric" ("discrete") for continuous (categorical) data. For display characters use "character" and add to visParams the element "values" containing the desired character names.
opacity
The legend's opacity is represented as a number between 0 and 1. Defaults to 1.
...
Extra legend creator arguments. See addLegend.
A EarthEngineMap
object.
\dontrun{ library(leaflet) library(rgee) ee_Initialize() Map$reset() # Load MODIS ImageCollection imgcol <- ee$ImageCollection$Dataset$MODIS_006_MOD13Q1 # Parameters for visualization labels <- c("good", "marginal", "snow", "cloud") cols <- c("#999999", "#00BFC4", "#F8766D", "#C77CFF") vis_qc <- list(min = 0, max = 3, palette = cols, bands = "SummaryQA", values = labels) # Create interactive map m_qc <- Map$addLayer(imgcol$median(), vis_qc, "QC") # continous palette Map$addLegend(vis_qc) # categorical palette Map$addLegend(vis_qc, name = "Legend1", color_mapping = "discrete") # character palette Map$addLegend(vis_qc, name = "Legend2", color_mapping = "character") }
clone()
The objects of this class are cloneable with this method.
R6Map$clone(deep = FALSE)
deep
Whether to make a deep clone.
## ------------------------------------------------ ## Method `R6Map$reset` ## ------------------------------------------------ ## Not run: library(rgee) ee_Initialize() # Load an Image image <- ee$Image("LANDSAT/LC08/C01/T1/LC08_044034_20140318") # Create Map <- R6Map$new() Map$centerObject(image) # Simple display: Map just will Map$addLayer( eeObject = image, visParams = list(min=0, max = 10000, bands = c("B4", "B3", "B2")), name = "l8_01" ) Map # display map Map$reset() # Reset arguments Map ## End(Not run) ## ------------------------------------------------ ## Method `R6Map$setCenter` ## ------------------------------------------------ ## Not run: library(rgee) ee_Initialize() Map <- R6Map$new() Map$setCenter(lon = -76, lat = 0, zoom = 5) Map # Map$lat # Map$lon # Map$zoom ## End(Not run) ## ------------------------------------------------ ## Method `R6Map$setZoom` ## ------------------------------------------------ ## Not run: library(rgee) ee_Initialize() Map <- R6Map$new() Map$setZoom(zoom = 4) Map # Map$lat # Map$lon # Map$zoom ## End(Not run) ## ------------------------------------------------ ## Method `R6Map$centerObject` ## ------------------------------------------------ ## Not run: library(rgee) ee_Initialize() Map <- R6Map$new() image <- ee$Image("LANDSAT/LC08/C01/T1/LC08_044034_20140318") Map$centerObject(image) Map ## End(Not run) ## ------------------------------------------------ ## Method `R6Map$addLayer` ## ------------------------------------------------ ## Not run: library(rgee) ee_Initialize() # Load an Image image <- ee$Image("LANDSAT/LC08/C01/T1/LC08_044034_20140318") # Create Map <- R6Map$new() Map$centerObject(image) # Simple display: Map just will Map$addLayer( eeObject = image, visParams = list(min=0, max = 10000, bands = c("B4", "B3", "B2")), name = "l8_01" ) Map$addLayer( eeObject = image, visParams = list(min=0, max = 20000, bands = c("B4", "B3", "B2")), name = "l8_02" ) # Simple display: Map just will (if the position is not specified it will # be saved on the right side) Map$reset() # Reset Map to the initial arguments. Map$centerObject(image) Map$addLayer( eeObject = image, visParams = list(min=0, max=10000, bands = c("B4", "B3", "B2")), name = "l8_left", position = "left" ) Map$addLayer( eeObject = image, visParams = list(min=0, max=20000, bands = c("B4", "B3", "B2")), name = "l8_right" ) Map$reset() ## End(Not run) ## ------------------------------------------------ ## Method `R6Map$addLayers` ## ------------------------------------------------ ## Not run: library(sf) library(rgee) ee_Initialize() Map <- R6Map$new() nc <- st_read(system.file("shape/nc.shp", package = "sf")) %>% st_transform(4326) %>% sf_as_ee() ee_s2 <- ee$ImageCollection("COPERNICUS/S2")$ filterDate("2016-01-01", "2016-01-31")$ filterBounds(nc) ee_s2 <- ee$ImageCollection(ee_s2$toList(2)) Map$centerObject(nc$geometry()) Map$addLayers(eeObject = ee_s2,position = "right") # digging up the metadata Map$previous_map_right$rgee$tokens Map$reset() ## End(Not run) ## ------------------------------------------------ ## Method `R6Map$addLegend` ## ------------------------------------------------ ## Not run: library(leaflet) library(rgee) ee_Initialize() Map$reset() # Load MODIS ImageCollection imgcol <- ee$ImageCollection$Dataset$MODIS_006_MOD13Q1 # Parameters for visualization labels <- c("good", "marginal", "snow", "cloud") cols <- c("#999999", "#00BFC4", "#F8766D", "#C77CFF") vis_qc <- list(min = 0, max = 3, palette = cols, bands = "SummaryQA", values = labels) # Create interactive map m_qc <- Map$addLayer(imgcol$median(), vis_qc, "QC") # continous palette Map$addLegend(vis_qc) # categorical palette Map$addLegend(vis_qc, name = "Legend1", color_mapping = "discrete") # character palette Map$addLegend(vis_qc, name = "Legend2", color_mapping = "character") ## End(Not run)
## ------------------------------------------------ ## Method `R6Map$reset` ## ------------------------------------------------ ## Not run: library(rgee) ee_Initialize() # Load an Image image <- ee$Image("LANDSAT/LC08/C01/T1/LC08_044034_20140318") # Create Map <- R6Map$new() Map$centerObject(image) # Simple display: Map just will Map$addLayer( eeObject = image, visParams = list(min=0, max = 10000, bands = c("B4", "B3", "B2")), name = "l8_01" ) Map # display map Map$reset() # Reset arguments Map ## End(Not run) ## ------------------------------------------------ ## Method `R6Map$setCenter` ## ------------------------------------------------ ## Not run: library(rgee) ee_Initialize() Map <- R6Map$new() Map$setCenter(lon = -76, lat = 0, zoom = 5) Map # Map$lat # Map$lon # Map$zoom ## End(Not run) ## ------------------------------------------------ ## Method `R6Map$setZoom` ## ------------------------------------------------ ## Not run: library(rgee) ee_Initialize() Map <- R6Map$new() Map$setZoom(zoom = 4) Map # Map$lat # Map$lon # Map$zoom ## End(Not run) ## ------------------------------------------------ ## Method `R6Map$centerObject` ## ------------------------------------------------ ## Not run: library(rgee) ee_Initialize() Map <- R6Map$new() image <- ee$Image("LANDSAT/LC08/C01/T1/LC08_044034_20140318") Map$centerObject(image) Map ## End(Not run) ## ------------------------------------------------ ## Method `R6Map$addLayer` ## ------------------------------------------------ ## Not run: library(rgee) ee_Initialize() # Load an Image image <- ee$Image("LANDSAT/LC08/C01/T1/LC08_044034_20140318") # Create Map <- R6Map$new() Map$centerObject(image) # Simple display: Map just will Map$addLayer( eeObject = image, visParams = list(min=0, max = 10000, bands = c("B4", "B3", "B2")), name = "l8_01" ) Map$addLayer( eeObject = image, visParams = list(min=0, max = 20000, bands = c("B4", "B3", "B2")), name = "l8_02" ) # Simple display: Map just will (if the position is not specified it will # be saved on the right side) Map$reset() # Reset Map to the initial arguments. Map$centerObject(image) Map$addLayer( eeObject = image, visParams = list(min=0, max=10000, bands = c("B4", "B3", "B2")), name = "l8_left", position = "left" ) Map$addLayer( eeObject = image, visParams = list(min=0, max=20000, bands = c("B4", "B3", "B2")), name = "l8_right" ) Map$reset() ## End(Not run) ## ------------------------------------------------ ## Method `R6Map$addLayers` ## ------------------------------------------------ ## Not run: library(sf) library(rgee) ee_Initialize() Map <- R6Map$new() nc <- st_read(system.file("shape/nc.shp", package = "sf")) %>% st_transform(4326) %>% sf_as_ee() ee_s2 <- ee$ImageCollection("COPERNICUS/S2")$ filterDate("2016-01-01", "2016-01-31")$ filterBounds(nc) ee_s2 <- ee$ImageCollection(ee_s2$toList(2)) Map$centerObject(nc$geometry()) Map$addLayers(eeObject = ee_s2,position = "right") # digging up the metadata Map$previous_map_right$rgee$tokens Map$reset() ## End(Not run) ## ------------------------------------------------ ## Method `R6Map$addLegend` ## ------------------------------------------------ ## Not run: library(leaflet) library(rgee) ee_Initialize() Map$reset() # Load MODIS ImageCollection imgcol <- ee$ImageCollection$Dataset$MODIS_006_MOD13Q1 # Parameters for visualization labels <- c("good", "marginal", "snow", "cloud") cols <- c("#999999", "#00BFC4", "#F8766D", "#C77CFF") vis_qc <- list(min = 0, max = 3, palette = cols, bands = "SummaryQA", values = labels) # Create interactive map m_qc <- Map$addLayer(imgcol$median(), vis_qc, "QC") # continous palette Map$addLegend(vis_qc) # categorical palette Map$addLegend(vis_qc, name = "Legend1", color_mapping = "discrete") # character palette Map$addLegend(vis_qc, name = "Legend2", color_mapping = "character") ## End(Not run)
Convert a Raster* object into an EE Image object
raster_as_ee( x, assetId, bucket = NULL, predefinedAcl = "bucketLevel", command_line_tool_path = NULL, overwrite = FALSE, monitoring = TRUE, quiet = FALSE, ... )
raster_as_ee( x, assetId, bucket = NULL, predefinedAcl = "bucketLevel", command_line_tool_path = NULL, overwrite = FALSE, monitoring = TRUE, quiet = FALSE, ... )
x |
RasterLayer, RasterStack or RasterBrick object to be converted into an ee$Image. |
assetId |
Character. Destination asset ID for the uploaded file. |
bucket |
Character. Name of the GCS bucket. |
predefinedAcl |
Specify user access to object. Passed to
|
command_line_tool_path |
Character. Path to the Earth Engine command line
tool (CLT). If NULL, rgee assumes that CLT is set in the system PATH.
(ignore if |
overwrite |
Logical. If TRUE, the assetId will be overwritten. |
monitoring |
Logical. If TRUE the exportation task will be monitored. |
quiet |
Logical. Suppress info message. |
... |
parameter(s) passed on to |
An ee$Image object
Other image upload functions:
stars_as_ee()
## Not run: library(raster) library(stars) library(rgee) ee_Initialize(gcs = TRUE) # Get the filename of a image tif <- system.file("tif/L7_ETMs.tif", package = "stars") x <- stack(tif) assetId <- sprintf("%s/%s",ee_get_assethome(),'raster_l7') # Method 1 # 1. Move from local to gcs gs_uri <- local_to_gcs(x = tif, bucket = 'rgee_dev') # 2. Create a manifest manifest <- ee_utils_create_manifest_image(gs_uri, assetId) # 3. Pass from gcs to asset gcs_to_ee_image( manifest = manifest, overwrite = TRUE ) # OPTIONAL: Monitoring progress ee_monitoring(max_attempts = Inf) # OPTIONAL: Display results ee_stars_01 <- ee$Image(assetId) Map$centerObject(ee_stars_01) Map$addLayer(ee_stars_01, list(min = 0, max = 255)) # Method 2 ee_stars_02 <- raster_as_ee( x = x, overwrite = TRUE, assetId = assetId, bucket = "rgee_dev" ) Map$centerObject(ee_stars_02) Map$addLayer(ee_stars_02, list(min = 0, max = 255)) ## End(Not run)
## Not run: library(raster) library(stars) library(rgee) ee_Initialize(gcs = TRUE) # Get the filename of a image tif <- system.file("tif/L7_ETMs.tif", package = "stars") x <- stack(tif) assetId <- sprintf("%s/%s",ee_get_assethome(),'raster_l7') # Method 1 # 1. Move from local to gcs gs_uri <- local_to_gcs(x = tif, bucket = 'rgee_dev') # 2. Create a manifest manifest <- ee_utils_create_manifest_image(gs_uri, assetId) # 3. Pass from gcs to asset gcs_to_ee_image( manifest = manifest, overwrite = TRUE ) # OPTIONAL: Monitoring progress ee_monitoring(max_attempts = Inf) # OPTIONAL: Display results ee_stars_01 <- ee$Image(assetId) Map$centerObject(ee_stars_01) Map$addLayer(ee_stars_01, list(min = 0, max = 255)) # Method 2 ee_stars_02 <- raster_as_ee( x = x, overwrite = TRUE, assetId = assetId, bucket = "rgee_dev" ) Map$centerObject(ee_stars_02) Map$addLayer(ee_stars_02, list(min = 0, max = 255)) ## End(Not run)
Pass an R date object ("Date", "Numeric", "character", "POSIXt", and "POSIXct") to Google Earth Engine (ee$Date).
rdate_to_eedate(date, timestamp = FALSE)
rdate_to_eedate(date, timestamp = FALSE)
date |
R date object |
timestamp |
Logical. By default, FALSE. If TRUE, return the date in milliseconds from the Unix Epoch (1970-01-01 00:00:00 UTC). Otherwise, return a EE date object. |
rdate_to_eedate
will return either a numeric timestamp or
an ee$Date depending on the timestamp
argument.
Other date functions:
ee_get_date_ic()
,
ee_get_date_img()
,
eedate_to_rdate()
## Not run: library(rgee) ee_Initialize() rdate_to_eedate('2000-01-01') rdate_to_eedate(315532800000) # float number ## End(Not run)
## Not run: library(rgee) ee_Initialize() rdate_to_eedate('2000-01-01') rdate_to_eedate(315532800000) # float number ## End(Not run)
Load an sf object to Earth Engine.
sf_as_ee( x, via = "getInfo", assetId = NULL, bucket = NULL, predefinedAcl = "bucketLevel", command_line_tool_path = NULL, overwrite = TRUE, monitoring = TRUE, proj = "EPSG:4326", evenOdd = TRUE, geodesic = NULL, quiet = FALSE, ... )
sf_as_ee( x, via = "getInfo", assetId = NULL, bucket = NULL, predefinedAcl = "bucketLevel", command_line_tool_path = NULL, overwrite = TRUE, monitoring = TRUE, proj = "EPSG:4326", evenOdd = TRUE, geodesic = NULL, quiet = FALSE, ... )
x |
object of class sf, sfc or sfg. |
via |
Character. Upload method for sf objects. Three methods are implemented: 'getInfo', 'getInfo_to_asset' and 'gcs_to_asset'. See details. |
assetId |
Character. Destination asset ID for the uploaded file. Ignore
if |
bucket |
Character. Name of the bucket (GCS) to save intermediate files
(ignore if |
predefinedAcl |
Specify user access to object. Passed to
|
command_line_tool_path |
Character. Path to the Earth Engine command line
tool (CLT). If NULL, rgee assumes that CLT is set in the system PATH.
(ignore if |
overwrite |
A boolean argument that indicates indicating
whether "filename" should be overwritten. Ignore if |
monitoring |
Logical. Ignore if via is not set as
|
proj |
Integer or character. Coordinate Reference System (CRS) for the EE object, defaults to "EPSG:4326" (x=longitude, y=latitude). |
evenOdd |
Logical. Ignored if |
geodesic |
Logical. Ignored if |
quiet |
Logical. Suppress info message. |
... |
|
sf_as_ee
supports the upload of sf
objects by three different
options: "getInfo" (default), "getInfo_to_asset", and "gcs_to_asset". getInfo
transforms sf objects (sfg, sfc, or sf) to GeoJSON (using geojsonio::geojson_json
)
and then encrusted them in an HTTP request using the server-side objects that are
implemented in the Earth Engine API (i.e. ee$Geometry$...). If the sf object is too
large (~ >1Mb) is likely to cause bottlenecks since it is a temporary
file that is not saved in your EE Assets (server-side). The second option implemented
is 'getInfo_to_asset'. It is similar to the previous one, with the difference
that after create the server-side object will save it in your Earth Engine
Assets. For dealing with very large spatial objects is preferable to use the
third option 'gcs_to_asset'. This option firstly saves the sf object as a *.shp
file in the /temp directory. Secondly, using the function local_to_gcs
will move the shapefile from local to Google Cloud Storage. Finally, using
the function gcs_to_ee_table
the ESRI shapefile will be loaded
to their EE Assets. See Importing
table data documentation for more details.
When via
is "getInfo" and x
is either an sf or sfc object
with multiple geometries will return an ee$FeatureCollection
. For
single sfc and sfg objects will return an ee$Geometry$...
.
If via
is either "getInfo_to_asset" or "gcs_to_asset" always will
return an ee$FeatureCollection
.
## Not run: library(rgee) library(sf) ee_Initialize() # 1. Handling geometry parameters # Simple ee_x <- st_read(system.file("shape/nc.shp", package = "sf")) %>% sf_as_ee() Map$centerObject(eeObject = ee_x) Map$addLayer(ee_x) # Create a right-inside polygon. toy_poly <- matrix(data = c(-35,-10,-35,10,35,10,35,-10,-35,-10), ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() holePoly <- sf_as_ee(x = toy_poly, evenOdd = FALSE) # Create an even-odd version of the polygon. evenOddPoly <- sf_as_ee(toy_poly, evenOdd = TRUE) # Create a point to test the insideness of the polygon. pt <- ee$Geometry$Point(c(1.5, 1.5)) # Check insideness with a contains operator. print(holePoly$contains(pt)$getInfo() %>% ee_utils_py_to_r()) print(evenOddPoly$contains(pt)$getInfo() %>% ee_utils_py_to_r()) # 2. Upload small geometries to EE asset assetId <- sprintf("%s/%s", ee_get_assethome(), 'toy_poly') eex <- sf_as_ee( x = toy_poly, overwrite = TRUE, assetId = assetId, via = "getInfo_to_asset") # 3. Upload large geometries to EE asset ee_Initialize(gcs = TRUE) assetId <- sprintf("%s/%s", ee_get_assethome(), 'toy_poly_gcs') eex <- sf_as_ee( x = toy_poly, overwrite = TRUE, assetId = assetId, bucket = 'rgee_dev', monitoring = FALSE, via = 'gcs_to_asset' ) ee_monitoring(max_attempts = Inf) ## End(Not run)
## Not run: library(rgee) library(sf) ee_Initialize() # 1. Handling geometry parameters # Simple ee_x <- st_read(system.file("shape/nc.shp", package = "sf")) %>% sf_as_ee() Map$centerObject(eeObject = ee_x) Map$addLayer(ee_x) # Create a right-inside polygon. toy_poly <- matrix(data = c(-35,-10,-35,10,35,10,35,-10,-35,-10), ncol = 2, byrow = TRUE) %>% list() %>% st_polygon() holePoly <- sf_as_ee(x = toy_poly, evenOdd = FALSE) # Create an even-odd version of the polygon. evenOddPoly <- sf_as_ee(toy_poly, evenOdd = TRUE) # Create a point to test the insideness of the polygon. pt <- ee$Geometry$Point(c(1.5, 1.5)) # Check insideness with a contains operator. print(holePoly$contains(pt)$getInfo() %>% ee_utils_py_to_r()) print(evenOddPoly$contains(pt)$getInfo() %>% ee_utils_py_to_r()) # 2. Upload small geometries to EE asset assetId <- sprintf("%s/%s", ee_get_assethome(), 'toy_poly') eex <- sf_as_ee( x = toy_poly, overwrite = TRUE, assetId = assetId, via = "getInfo_to_asset") # 3. Upload large geometries to EE asset ee_Initialize(gcs = TRUE) assetId <- sprintf("%s/%s", ee_get_assethome(), 'toy_poly_gcs') eex <- sf_as_ee( x = toy_poly, overwrite = TRUE, assetId = assetId, bucket = 'rgee_dev', monitoring = FALSE, via = 'gcs_to_asset' ) ee_monitoring(max_attempts = Inf) ## End(Not run)
Convert a stars or stars-proxy object into an EE Image object
stars_as_ee( x, assetId, bucket = NULL, predefinedAcl = "bucketLevel", command_line_tool_path = NULL, overwrite = FALSE, monitoring = TRUE, quiet = FALSE, ... )
stars_as_ee( x, assetId, bucket = NULL, predefinedAcl = "bucketLevel", command_line_tool_path = NULL, overwrite = FALSE, monitoring = TRUE, quiet = FALSE, ... )
x |
stars or stars-proxy object to be converted into an ee$Image. |
assetId |
Character. Destination asset ID for the uploaded file. |
bucket |
Character. Name of the GCS bucket. |
predefinedAcl |
Specify user access to object. Passed to
|
command_line_tool_path |
Character. Path to the Earth Engine command line
tool (CLT). If NULL, rgee assumes that CLT is set in the system PATH.
(ignore if |
overwrite |
Logical. If TRUE, the assetId will be overwritten. |
monitoring |
Logical. If TRUE the exportation task will be monitored. |
quiet |
Logical. Suppress info message. |
... |
parameter(s) passed on to |
An ee$Image object
Other image upload functions:
raster_as_ee()
## Not run: library(rgee) library(stars) ee_Initialize(gcs = TRUE) # Get the filename of a image tif <- system.file("tif/L7_ETMs.tif", package = "stars") x <- read_stars(tif) assetId <- sprintf("%s/%s",ee_get_assethome(),'stars_l7') # # Method 1 # 1. Move from local to gcs gs_uri <- local_to_gcs(x = tif, bucket = 'rgee_dev') # 2. Create a manifest manifest <- ee_utils_create_manifest_image(gs_uri, assetId) # 3. Pass from gcs to asset gcs_to_ee_image( manifest = manifest, overwrite = TRUE ) # OPTIONAL: Monitoring progress ee_monitoring(max_attempts = Inf) # OPTIONAL: Display results ee_stars_01 <- ee$Image(assetId) Map$centerObject(ee_stars_01) Map$addLayer(ee_stars_01, list(min = 0, max = 255)) # Method 2 ee_stars_02 <- stars_as_ee( x = x, overwrite = TRUE, assetId = assetId, bucket = "rgee_dev" ) Map$centerObject(ee_stars_02) Map$addLayer(ee_stars_02, list(min = 0, max = 255)) ## End(Not run)
## Not run: library(rgee) library(stars) ee_Initialize(gcs = TRUE) # Get the filename of a image tif <- system.file("tif/L7_ETMs.tif", package = "stars") x <- read_stars(tif) assetId <- sprintf("%s/%s",ee_get_assethome(),'stars_l7') # # Method 1 # 1. Move from local to gcs gs_uri <- local_to_gcs(x = tif, bucket = 'rgee_dev') # 2. Create a manifest manifest <- ee_utils_create_manifest_image(gs_uri, assetId) # 3. Pass from gcs to asset gcs_to_ee_image( manifest = manifest, overwrite = TRUE ) # OPTIONAL: Monitoring progress ee_monitoring(max_attempts = Inf) # OPTIONAL: Display results ee_stars_01 <- ee$Image(assetId) Map$centerObject(ee_stars_01) Map$addLayer(ee_stars_01, list(min = 0, max = 255)) # Method 2 ee_stars_02 <- stars_as_ee( x = x, overwrite = TRUE, assetId = assetId, bucket = "rgee_dev" ) Map$centerObject(ee_stars_02) Map$addLayer(ee_stars_02, list(min = 0, max = 255)) ## End(Not run)