Package: leafem (via r-universe)

September 2, 2024

Title 'leaflet' Extensions for 'mapview'
Version 0.2.3.9006
Maintainer Tim Appelhans <tim.appelhans@gmail.com>

Description Provides extensions for packages 'leaflet' & 'mapdeck’,
many of which are used by package 'mapview'. Focus is on
functionality readily available in Geographic Information
Systems such as 'Quantum GIS'. Includes functions to display
coordinates of mouse pointer position, query image values via
mouse pointer and zoom-to-layer buttons. Additionally, provides
a feature type agnostic function to add points, lines, polygons
to a map.

License MIT + file LICENSE

URL https://github.com/r-spatial/leafem,
https://r-spatial.github.io/leafem/

BugReports https://github.com/r-spatial/leafem/issues
Depends R (>=3.1.0)

Imports base64enc, geojsonsf, htmltools (>= 0.3), htmlwidgets, leaflet
(>=2.0.1), methods, raster, sf, png

Suggests clipr, leafgl, Iwgeom, mapdeck, plainview, stars, terra,
tools

Encoding UTF-8

LazyData false

RoxygenNote 7.3.1

Repository https://r-spatial.r-universe.dev

RemoteUrl https://github.com/r-spatial/leafem

RemoteRef HEAD

RemoteSha 541e2a6fa4991b9a81aadc0631205237bc2fcc37

https://github.com/r-spatial/leafem
https://r-spatial.github.io/leafem/
https://github.com/r-spatial/leafem/issues

2 addCOG

Contents
addCOG e 2
addCopyExtent L 4
addEXtent 5
addFeatures L 5
addFgb 6
addGeoRaster 8
addGeotiff 10
addHomeButton 12
addImageQuery e 13
addLocalFile e 15
addLogo 16
addMouseCoordinates e 18
addPMPolygons L 19
addRasterRGB 22
addReactiveFeatures 24
addStarsImage L 25
addStaticLabels 27
addTileFolder e 28
colorOptions e 29
garnishMap L 30
imagequeryOptions e e 30
paintRules L 31
updateLayersControl L. 32

Index 34

addCoG Add Cloud Optimised Geotiff (COG) to a leaflet map.
Description

Add Cloud Optimised Geotiff (COG) to a leaflet map.

Usage

addCOoG(
map,
url = NULL,
group = NULL,
layerId = NULL,
resolution = 96,
opacity = 0.8,
options = leaflet::tileOptions(),
colorOptions = NULL,
pixelValuesToColorFn = NULL,
autozoom = TRUE,

addCOG 3

rgb = FALSE,
imagequery = TRUE,
imagequeryOptions = NULL,

Arguments

map the map to add the COG to.

url url to the COG file to render.

group he name of the group this raster image should belong to.

layerId the layerld.

resolution the target resolution for the simple nearest neighbor interpolation. Larger values
will result in more detailed rendering, but may impact performance. Default is
96 (pixels).

opacity opacity of the rendered layer.

options options to be passed to the layer. See tileOptions for details.

colorOptions list defining the palette, breaks and na.color to be used. Currently not used.
pixelValuesToColorFn
optional JS function to be passed to the browser. Can be used to fine tune
and manipulate the color mapping. See examples & https://github.com/
r-spatial/leafem/issues/25 for some examples. Currently not used.

autozoom whether to automatically zoom to the full extent of the layer. Default is TRUE
rgb logical, whether to render Geotiff as RGB. Currently not used.

imagequery If TRUE a leaflet control with the hovered/clicked value will appear on the map.
imagequeryOptions

additional options for the control panel.

currently not used.

Details

This function will overlay Cloud Optimised Geotiff data from a remote url on a leaflet map. Like
‘addGeotiff” it uses the leaflet plugin ’georaster-layer-for-leaflet’ to render the data. See ‘addGeo-
tiff* for a bit more detail what that means.

Value

A leaflet map object.

Examples

if (interactive()) {
library(leaflet)
library(leafem)

base_url = "https://sentinel-cogs.s3.us-west-2.amazonaws.com"

https://github.com/r-spatial/leafem/issues/25
https://github.com/r-spatial/leafem/issues/25

4 addCopyExtent

image_url = "sentinel-s2-12a-cogs/46/X/DG/2022/8/S2B_46XDG_20220829_0_L2A/L2A_PVI.tif"
url = sprintf("%s/%s", base_url, image_url)

leaflet() |>
addTiles() |>
leafem: : :addCOG(
url = url
, group = "COG"
, resolution = 512
, autozoom = TRUE

)

addCopyExtent Copy current view extent to the clipboard

Description

Add JavaScript functioality to enable copying of the current view bouding box to the clipboard. The
copy . btn argument expects a valid keycode event. code such as "KeyE" (the default). Use https:
//www. toptal.com/developers/keycode/ to find the approprate codes for your keyboard.

Usage

addCopyExtent(map, event.code = "KeyE")

Arguments
map a mapview or leaflet object.
event.code the JavaScript event.code for ley strokes.
Examples
library(leaflet)

leaflet() %>%

addProviderTiles("CartoDB.Positron”) %>%
addCopyExtent(event.code = "KeyE") %>%
addMouseCoordinates()

now click on the map (!) and zoom to anywhere in the map, then press 'e' on
your keyboard. This will copy the current extent/bounding box as a JSON object

to your clipboard which can then be parsed with:

jsonlite::fromJSON(<Ctrl+v>)

https://www.toptal.com/developers/keycode/
https://www.toptal.com/developers/keycode/

addExtent 5

addExtent Add extent/bbox of spatial objects to a leaflet map

Description

This function adds the bounding box of a spatial object to a leaflet or mapview map.

Usage

addExtent(map, data, ...)
Arguments

map A leaflet or mapview map.

data A sf object to be added to the map.

additional arguments passed on to addFeatures

Examples

library(leaflet)

Usage in leaflet

leaflet() %>%
addProviderTiles("OpenStreetMap”) %>%
addExtent (gadmCHE)

leaflet(gadmCHE) %>%
addProviderTiles("OpenStreetMap”) %>%
addExtent ()

addFeatures Type agnositc version of leaflet: :add* functions.

Description

Add simple features geometries from sf

Usage
addFeatures(map, data, pane = "overlayPane”, ...)
Arguments
map A leaflet or mapview map.
data A sf object to be added to the map.
pane The name of the map pane for the features to be rendered in.

Further arguments passed to the respective leaflet: : add* functions. See addCircleMarkers,
addPolylines and addPolygons.

Value

A leaflet map object.

addFgb

Examples
library(leaflet)
leaflet() %>% addProviderTiles("OpenStreetMap"”) %>% addCircleMarkers(data = breweries91)
leaflet() %>% addProviderTiles("OpenStreetMap”) %>% addFeatures(data = breweries91)
leaflet() %>% addProviderTiles("OpenStreetMap") %>% addPolylines(data = atlStorms2005)
leaflet() %>% addProviderTiles("OpenStreetMap”) %>% addFeatures(atlStorms2005)
leaflet() %>% addProviderTiles("OpenStreetMap”) %>% addPolygons(data = gadmCHE)
leaflet() %>% addProviderTiles("OpenStreetMap”) %>% addFeatures(gadmCHE)

addFgb Add a flatgeobuf file to leaflet map
Description

flatgeobuf is a performant binary geo-spatial file format suitable for serving large data. For more
details see https://github.com/flatgeobuf/flatgeobuf and the respective documentation for
the GDAL/OGR driver at https://gdal.org/drivers/vector/flatgeobuf.html.

In contrast to classical ways of serving data from R onto a leaflet map, flatgeobuf can stream the
data chunk by chunk so that rendering of the map is more or less instantaneous. The map is respon-
sive while data is still loading so that popup queries, zooming and panning will work even though
not all data has been rendered yet. This makes for a rather pleasant user experience as we don’t
have to wait for all data to be added to the map before interacting with it.

Usage
addFgb(

map?
file = NULL,
url = NULL,
layerId = NULL,
group = NULL,
popup = NULL,
label = NULL,

radius = 10,

stroke =

TRUE,

color = "#@3F",

weight =

5,

opacity = 0.5,
fill = FALSE,

https://github.com/flatgeobuf/flatgeobuf
https://gdal.org/drivers/vector/flatgeobuf.html

addFgb

fillColor = NULL,
fillOpacity = 0.2,
dashArray = NULL,
NULL,

options =
className
scale =

NULL,

scaleOptions(),

minZoom = NULL,
maxZoom = 52,

Arguments

map
file
url
layerId
group

popup

label
radius
stroke
color
weight
opacity
fill

fillColor
fillOpacity
dashArray

options

className

scale

minZoom

maxZoom

a mapview or leaflet object.

file path to the .fgb file to be added to map. If set, url is ignored.
url of the data to be added to map. Only respected if file = NULL.
the layer id.

the group name for the file to be added to map.

either a logical of whether to show the feature properties (fields) in popups or
the name of the field to show in popups.

name of the field to be shown as a tooltip.

the size of the circle markers.

whether to draw stroke along the path (e.g. the borders of polygons or circles).
stroke color.

stroke width in pixels.

stroke opacity.

whether to fill the path with fillColor. If fillColor is set, this will be set to
TRUE, default is FALSE.

fill color. If set, fill will be set to TRUE.
fill opacity.
a string that defines the stroke dash pattern.

a list of extra options for tile layers, popups, paths (circles, rectangles, polygons,
...), or other map elements.

optional class name for the popup (table). Can be used to define css for the
popup.

named list with instructions on how to scale radius, width, opacity, fillOpacity
if those are to be mapped to an attribute column.

minimum zoom level at which data should be rendered.
maximum zoom level at which data should be rendered.

currently not used.

8 addGeoRaster

Examples

if (interactive()) {
library(leaflet)
library(leafem)

via URL
url = "https://raw.githubusercontent.com/flatgeobuf/flatgeobuf/3.0.1/test/data/UScounties.fgb"

leaflet() %>%
addTiles() %>%
leafem:: :addFgb(

url = url

, group = "counties”
, label = "NAME"

, popup = TRUE

, fill = TRUE

, fillColor = "blue”
, fillOpacity = 0.6

, color = "black”
, weight =1
) %%

addLayersControl(overlayGroups = c("counties”)) %>%
addMouseCoordinates() %>%
setView(lng = -105.644, lat = 51.618, zoom = 3)

addGeoRaster Add stars/raster image to a leaflet map using optimised rendering.

Description

Add stars/raster image to a leaflet map using optimised rendering.

Usage
addGeoRaster(
map,
X,
group = NULL,

layerId = NULL,

resolution = 96,

opacity = 0.8,

options = leaflet::tileOptions(),
colorOptions = NULL,

project = TRUE,
pixelValuesToColorFn = NULL,
autozoom = TRUE,

addGeoRaster 9
Arguments
map the map to add the raster data to.
X the stars/raster object to be rendered.
group the name of the group this raster image should belong to.
layerId the layerld.
resolution the target resolution for the simple nearest neighbor interpolation. Larger values
will result in more detailed rendering, but may impact performance. Default is
96 (pixels).
opacity opacity of the rendered layer.
options options to be passed to the layer. See tileOptions for details.
colorOptions list defining the palette, breaks and na.color to be used.
project whether to project the RasterLayer to conform with leaflets expected crs. De-
faults to TRUE and things are likely to go haywire if set to FALSE.
pixelValuesToColorFn
optional JS function to be passed to the browser. Can be used to fine tune
and manipulate the color mapping. See https://github.com/r-spatial/
leafem/issues/25 for some examples.
autozoom whether to automatically zoom to the full extent of the layer. Default is TRUE
Further arguments passed to addGeotiff.
Details

This uses the leaflet plugin ’georaster-layer-for-leaflet’ to render raster data. See https://github.
com/GeoTIFF/georaster-layer-for-leaflet for details. The clue is that rendering uses simple
nearest neighbor interpolation on-the-fly to ensure smooth rendering. This enables handling of
larger rasters than with the standard addRasterImage.

Value

A leaflet map object.

Examples

if (interactive()) {
library(leaflet)

library(leafem)
library(stars)

tif = system.file("tif/L7_ETMs.tif", package = "stars")

x1
x1

leaflet() %>%

read_stars(tif)
x1[, , , 3] # band 3

addTiles() %>%
leafem: : :addGeoRaster(

x1

https://github.com/r-spatial/leafem/issues/25
https://github.com/r-spatial/leafem/issues/25
https://github.com/GeoTIFF/georaster-layer-for-leaflet
https://github.com/GeoTIFF/georaster-layer-for-leaflet

10 addGeotiff
, opacity = 1
, colorOptions = colorOptions(
palette = grey.colors(256)
)
)
3
addGeotiff Add a GeoTIFF file to a leaflet map using optimised rendering.
Description

Add a GeoTIFF file to a leaflet map using optimised rendering.

Usage

addGeotiff(

map,
file =

NULL,

url = NULL,

group =
layerId

NULL,
= NULL,

resolution = 96,

bands =
arith =
project

method =

opacity
options

NULL,

NULL,

= TRUE,

NULL,

= 0.8,

= leaflet::tileOptions(),

colorOptions = NULL,

rgb = FALSE,
pixelValuesToColorFn = NULL,
autozoom = TRUE,

imagequery = TRUE,
imagequeryOptions = NULL,

Arguments
map
file
url
group

layerlId

the map to add the raster data to.

path to the GeoTIFF file to render.

url to the GeoTIFF file to render. Ignored if file is provided.
he name of the group this raster image should belong to.

the layerld.

addGeotitf

11

resolution the target resolution for the simple nearest neighbor interpolation. Larger values
will result in more detailed rendering, but may impact performance. Default is
96 (pixels).

bands which bands to use in case of multi-band Geotiff.

arith an optional function to be applied to a multi-layer object. Will be computed
on-the-fly in the browser.

project if TRUE (default), automatically project x to the map projection expected by
georaster-layer-for-leaflet (EPSG:4326); if FALSE, it’s the caller’s responsibil-
ity to ensure that file is already projected.

method character defining the resampling method to be used when project is TRUE.
See https://gdal.org/programs/gdalwarp.html#cmdoption-gdalwarp-r
for possible values.

opacity opacity of the rendered layer.

options options to be passed to the layer. See tileOptions for details.

colorOptions list defining the palette, breaks and na.color to be used.

rgb logical, whether to render Geotiff as RGB.

pixelValuesToColorFn
optional JS function to be passed to the browser. Can be used to fine tune
and manipulate the color mapping. See examples & https://github.com/
r-spatial/leafem/issues/25 for some examples.

autozoom whether to automatically zoom to the full extent of the layer. Default is TRUE

imagequery If TRUE a leaflet control with the hovered/clicked value will appear on the map.

imagequeryOptions
additional options for the control panel.
currently not used.

Details

This uses the leaflet plugin ’georaster-layer-for-leaflet’ to render GeoTIFF data. See https://
github.com/GeoTIFF/georaster-layer-for-leaflet for details. The GeoTIFF file is read di-
rectly in the browser using geotiffjs (https://geotiffjs.github.io/), so there’s no need to read
data into the current R session. GeoTIFF files can be read from the file system or via url. The clue
is that rendering uses simple nearest neighbor interpolation on-the-fly to ensure smooth rendering.
This enables handling of larger rasters than with the standard addRasterImage.

Value

A leaflet map object.

Examples

if (interactive()) {
library(leaflet)

library(leafem)
library(stars)

https://gdal.org/programs/gdalwarp.html#cmdoption-gdalwarp-r
https://github.com/r-spatial/leafem/issues/25
https://github.com/r-spatial/leafem/issues/25
https://github.com/GeoTIFF/georaster-layer-for-leaflet
https://github.com/GeoTIFF/georaster-layer-for-leaflet
https://geotiffjs.github.io/

12 addHomeButton

tif = system.file("tif/L7_ETMs.tif", package = "stars")

x1 = read_stars(tif)
x1 = x1[, , , 3] # band 3
tmpfl = tempfile(fileext = ".tif")

write_stars(st_warp(x1, crs = 4326), tmpfl)

leaflet() %>%
addTiles() %>%
addGeotiff(
file = tmpfl
, opacity = 0.9
, colorOptions = colorOptions(
palette = hcl.colors(256, palette = "inferno")

, ha.color = "transparent”
)
)
3
addHomeButton Add a home button / zoom-to-layer button to a map.
Description

This function adds a button to the map that enables zooming to a provided extent / bbox.

Usage

addHomeButton(map, ext, group = "layer”, position = "bottomright”, add = TRUE)

removeHomeButton(map)

Arguments

map a mapview or leaflet object.

ext the extent / bbox to zoom to.

group the name of the group/layer to be zoomed to (or any character string)

position the position of the button (one of ’topleft’, ’topright’, *bottomleft’, "bottom-

right’). Defaults to “bottomright’.

add logical. Whether to add the button to the map (mainly for internal use).

Functions

* removeHomeButton(): remove a homeButton from a map

addImageQuery 13

Examples

library(leaflet)
library(raster)

pass a group name only

m <- leaflet() %>%
addProviderTiles("OpenStreetMap”) %>%
addCircleMarkers(data = breweries91, group = "breweries91") %>%
addHomeButton(group = "breweries91")

m

pass a raster extent - group can now be an arbitrary label

m <- leaflet() %>%
addProviderTiles("OpenStreetMap”) %>%
addCircleMarkers(data = breweries91, group = "breweries91") %>%
addHomeButton(ext = extent(breweries91), group = "Brew")

m

remove the button
removeHomeButton(m)

addImageQuery Add image query functionality to leaflet/mapview map.

Description

Add image query functionality to leaflet/mapview map.

Usage
addImageQuery(
map,
X)
band = 1,
group = NULL,

layerId = NULL,

project = TRUE,

type = c("mousemove”, "click"),
digits,

position = "topright”,

prefix = "Layer”,

nn

className = "",

14

Arguments

map
X
band
group

layerId
project
type
digits
position

prefix

className

Details

addImageQuery

the map with the RasterLayer to be queried.
the RasterLayer that is to be queried.

for stars layers, the band number to be queried.
the group of the RasterLayer to be queried.

the layerld of the RasterLayer to be queried. Needs to be the same as supplied
in addRasterImage or addStarsImage.

whether to project the RasterLayer to conform with leaflets expected crs. De-
faults to TRUE and things are likely to go haywire if set to FALSE.

whether query should occur on *mousemove’ or ’click’. Defaults to 'mouse-
move’.

the number of digits to be shown in the display field.
where to place the display field. Default is ’topright’.
a character string to be shown as prefix for the layerld.
a character string to append to the control legend.

currently not used.

This function enables Raster*/stars objects added to leaflet/mapview maps to be queried. Standard
query is on 'mousmove’, but can be changed to ’click’. Note that for this to work, the layerId
needs to be the same as the one that was set in addRasterImage or addStarsImage. Currently only
works for numeric values (i.e. numeric/integer and factor values are supported).

Value

A leaflet map object.

Examples

if (interactive()) {
if (requireNamespace("plainview")) {
library(leaflet)
library(plainview)

leaflet() %>%

addProviderTiles("OpenStreetMap”) %>%
addRasterImage(poppendorf[[1]], project = TRUE, group = "poppendorf",

layerId = "poppendorf”) %>%

addImageQuery(poppendorf[[1]], project = TRUE,

layerId = "poppendorf”) %>%

addLayersControl(overlayGroups = "poppendorf")

addLocalFile

15

addLocalFile

Add vector data to leaflet map directly from the file system

Description

Add vector data to leaflet map directly from the file system

Usage
addLocalFile(
map,
file,
layerId = NULL,
group = NULL,
popup = NULL,
label = NULL,
radius = 10,
stroke = TRUE,
color = "#@3F",
weight = 5,
opacity = 0.5,
fill = TRUE,
fillColor = color,
fillOpacity = 0.2,
dashArray = NULL,
options = NULL
)
Arguments
map a mapview or leaflet object.
file file path to the file to be added to map. NOTE: will be reprojected on-the-fly if
not in "longlat".
layerId the layer id.
group the group name for the file to be added to map.
popup either a logical of whether to show the feature properties (fields) in popups or
the name of the field to show in popups.
label name of the field to be shown as a tooltip.
radius the size of the circle markers.
stroke whether to draw stroke along the path (e.g. the borders of polygons or circles).
color stroke color.
weight stroke width in pixels.
opacity stroke opacity.
fill whether to fill the path with color (e.g. filling on polygons or circles).

16 addLogo
fillColor fill color.
fillOpacity fill opacity.
dashArray a string that defines the stroke dash pattern.
options a list of extra options for tile layers, popups, paths (circles, rectangles, polygons,
...), or other map elements.
Examples
if (interactive()) {
library(leafem)
library(leaflet)
library(sf)
destfile = tempfile(fileext = ".gpkg")
st_write(st_as_sf(gadmCHE), dsn = destfile)
leaflet() %>%
addTiles() %>%
addLocalFile(destfile, popup = TRUE)
}
addLogo add a local or remote image (png, jpg, gif, bmp, ...) to a leaflet map
Description

This function adds an image to a map. Both local and remote (web) image sources are supported.
Position on the map is completely controllable.

Usage
addLogo(
map,
img,
alpha = 1,
src = NULL,
url = NULL,

position = c("topleft”, "topright"”, "bottomleft”, "bottomright"),

offset.x = 50,
offset.y = 13,

width = 60,
height = 60,
class = NULL,

layerId = NULL

addLogo

17

updateLogo(map, img, layerId)

removeLogo(map, layerId)

hideLogo(map, layerld)

showLogo(map, layerld)

Arguments
map
img
alpha

src

url

position
offset.x
offset.y
width
height
class

layerId

Examples

library(leaflet)

a mapview or leaflet object.
the image to be added to the map.
opacity of the added image.

DEPRECATED. The function now automatically determines if ‘img‘ is a local
or remote image using ‘file.exists(img)‘.

an optional URL to be opened when clicking on the image (e.g. company’s
homepage).

one of "topleft", "topright", "bottomleft", "bottomright".

the offset in x direction from the chosen position (in pixels).

the offset in y direction from the chosen position (in pixels).

width of the rendered image in pixels.

height of the rendered image in pixels.

optional class

an id for the logo div.

default position is topleft next to zoom control

img <- "https://www.r-project.org/logo/Rlogo.svg"
leaflet() %>% addTiles() %>% addLogo(img, url = "https://www.r-project.org/logo/")

with local image
if (requireNamespace("png")) {

library(png)

img <- system.file("img", "Rlogo.png"”, package="png")
leaflet() %>% addTiles() %>% addLogo(img, src = "local”, alpha = 0.3)

dancing banana gif :-)

m <- leaflet() %>%
addTiles() %>%
addCircleMarkers(data = breweries91)

addLogo(m, "https://jeroenooms.github.io/images/banana.gif”,

18 addMouseCoordinates

position = "bottomleft”,

offset.x = 5,
offset.y = 40,
width = 100,

height = 100)

addMouseCoordinates Add mouse coordinate information at top of map.

Description

This function adds a box displaying the current cursor location (latitude, longitude and zoom level)
at the top of a rendered mapview or leaflet map. In case of mapview, this is automatically added.
NOTE: The information will only render once a mouse movement has happened on the map.

Usage

addMouseCoordinates(map, epsg = NULL, proj4string = NULL, native.crs = FALSE)
removeMouseCoordinates(map)

clip2sfc(x, clipboard = TRUE)

Arguments

map a mapview or leaflet object.

epsg the epsg string to be shown.

proj4string the proj4string to be shown.

native.crs logical. whether to use the native crs in the coordinates box.

X a charcter string with valid longitude and latitude values. Order matters! If
missing and clipboard = TRUE (the default) contents will be read from the clip-
board.

clipboard whether to read contents from the clipboard. Default is TRUE.

Details

If style is set to "detailed", the following information will be displayed:

* Xx: x-position of the mouse cursor in projected coordinates

* y: y-position of the mouse cursor in projected coordinates

* epsg: the epsg code of the coordinate reference system of the map

* proj4: the proj4 definition of the coordinate reference system of the map

* lat: latitude position of the mouse cursor

addPMPolygons 19

* lon: longitude position of the mouse cursor

* zoom: the current zoom level
By default, only ’lat’, ’lon” and *zoom’ are shown. To show the details about epsg, proj4 press and
hold *Ctr]” and move the mouse. 'Ctrl’ + click will copy the current contents of the box/strip at

the top of the map to the clipboard, though currently only copying of ’lon’, ’lat’ and zoom’ are
supported, not "epsg’ and ’proj4’ as these do not change with pan and zoom.

Functions

* removeMouseCoordinates(): remove mouse coordinates information from a map

e clip2sfc(): convert mouse coordinates from clipboard to sfc

Examples

library(leaflet)
leaflet() %>%

addProviderTiles("OpenStreetMap”) # without mouse position info
m = leaflet() %>%

addProviderTiles("OpenStreetMap”) %>%
addMouseCoordinates()

m

removeMouseCoordinates(m)

addPMPolygons Add vector tiles stored as PMTiles in an AWS S3 bucket to a leaflet
map.

Description
Add vector tiles stored as PMTiles in an AWS S3 bucket to a leaflet map.

Add point data stored as PMTiles
Add polylines stored as PMTiles

Usage
addPMPolygons(
map,
url,
style,
layerId = NULL,
group = NULL,

pane = "overlayPane",

20 addPMPolygons

attribution = NULL

)
addPMPoints(
map,
url,
style,
layerId = NULL,
group = NULL,
pane = "overlayPane",
attribution = NULL
)
addPMPolylines(
map,
url,
style,
layerId = NULL,
group = NULL,
pane = "overlayPane",
attribution = NULL
)
Arguments
map the map to add to.
url the url to the tiles to be served.
style styling for the layer. See paintRules for details.
layerlId the layer id.
group group name.
pane the map pane to which the layer should be added. See [leaflet](addMapPane)
for details.
attribution optional attribution character string.
Details

These functions can be used to add cloud optimized vector tiles data in the ‘.pmtiles‘ format stored
in an Amazon Web Services (AWS) S3 bucket to a leaflet map. For instructions on how to create
these files, see https://github.com/protomaps/PMTiles.

NOTE: You may not see the tiles rendered in the RStudio viewer pane. Make sure to open the map
in a browser.

Functions

* addPMPoints(): add points stored as PMTiles
* addPMPolylines(): add ploylines stored as PMTiles

https://github.com/protomaps/PMTiles

addPMPolygons 21

Examples

PMPolygons
library(leaflet)
library(leafem)

url_nzb = "https://vector-tiles-data.s3.eu-central-1.amazonaws.com/nz-building-outlines.pmtiles”

leaflet() %>%
addTiles() %>%
addPMPolygons(
url = url_nzb
, layerId = "nzbuildings"”
, group = "nzbuildings”
, style = paintRules(
layer = "nz-building-outlines”
, fillColor = "pink”
, stroke = "green”
)
) %>%
setView(173.50, -40.80, 6)

PMPoints
library(leaflet)
library(leafem)

url_depoints = "https://vector-tiles-data.s3.eu-central-1.amazonaws.com/depoints.pmtiles”

leaflet() %>%
addTiles() %>%
addPMPoints(
url = url_depoints
, layerId = "depoints”
, group = "depoints”
, style = paintRules(
layer = "depoints”
, fillColor = "black”
, stroke = "white”
, radius = 4
)
) %>%
setView(10, 51, 6)

PMPolylines
library(leaflet)
library(leafem)

url_rivers = "https://vector-tiles-data.s3.eu-central-1.amazonaws.com/rivers_africa.pmtiles”

NOTE: these will only render until a zoom level of 7!!
leaflet() %>%

addTiles() %>%

addPMPolylines(

22

url = url_rivers

, layerId = "rivers”
, group = "rivers”
, style = paintRules(
layer = "rivers_africa”
, color = "blue”
)
) %%

setView(24, 2.5, 4)

addRasterRGB

addRasterRGB

Add an RGB image as a layer

Description

Create a Red-Green-Blue image overlay from a RasterStack /RasterBrick or stars object based
on three layers. Three layers (sometimes referred to as "bands" because they may represent different
bandwidths in the electromagnetic spectrum) are combined such that they represent the red, green
and blue channel. This function can be used to make ’true (or false) color images’ from Landsat
and other multi-band satellite images. Note, this text is plagirized, i.e. copied from plotRGB.
AddRasterRGB and addStarsRGB are aliases.

Usage
addRasterRGB(
map,
X)
r=3,
g =2,
b =1,

quantiles = c(0, 1),

domain = NULL,

na.color = "#BEBEBE8Q",

method = c("auto”,
)
addStarsRGB(

map,

X,

r=3,

g =2,

b =1,

"pbilinear"”, "near"),

quantiles = c(0, 1),

domain = NULL,

na.color = "#BEBEBE8Q",

method = c("auto”,

"pbilinear"”, "near"),

addRasterRGB 23

)
Arguments
map a map widget object created from ‘leaflet()*
X a ‘RasterBrick’, ‘RasterStack® or ‘stars raster object
r integer. Index of the Red channel/band, between 1 and nlayers(x)
g integer. Index of the Green channel/band, between 1 and nlayers(x)
integer. Index of the Blue channel/band, between 1 and nlayers(x)
quantiles the upper and lower quantiles used for color stretching. If set to NULL, stretch-
ing is performed basing on ‘domain‘ argument.
domain the upper and lower values used for color stretching. This is used only if ‘quan-
tiles® is NULL. If both ‘domain‘ and ‘quantiles‘ are set to NULL, stretching is
applied based on min-max values.
na.color the color to be used for NA pixels
method the method used for computing values of the new, projected raster image. "bilinear”
(the default) is appropriate for continuous data, "ngb" - nearest neighbor - is ap-
propriate for categorical data. Ignored if project = FALSE. See projectRaster
for details.
additional arguments passed on to addRasterImage
Author(s)

Tim Appelhans, Luigi Ranghetti

Examples

require(raster)
require(stars)
require(plainview)
require(leaflet)

leaflet() %>%
addTiles(group = "OpenStreetMap”) %>%
addRasterRGB(plainview: :poppendorf, 4,3,2, group = "True colours”) %>%
addStarsRGB(st_as_stars(plainview: :poppendorf), 5,4,3, group = "False colours"”) %>%
addLayersControl(
baseGroups = c("Satellite"),
overlayGroups = c("True colours”, "False colours"),

)

24

addReactiveFeatures

addReactiveFeatures

Add a reactive layer to map.

Description

This function adds a layer to a map that is dependent on another layer. The reactive layer will be
shown/hidden when holding the Ctrl-button on your keyboard and performing the action defined by
on. on can be either "click" (default) or "mouseover".

Note: srcLayer needs to be added to the map using addGeoJSON because we need to be able to
link the two layers by a common attribute defined by argument by. Linking will be done via group

name of srcLayer.

Usage
addReactiveFeatures(
map,
X ’
srcLayer,
by,
on,
group,
layerId = NULL,
options = NULL,
style = NULL,
updateStyle = NULL,
popup = NULL,
)
Arguments
map a mapview or leaflet object.
X the (sf) features to be added to the map.
srclLayer the group name of the source layer that x should be bound to.
by shared attribute between x and srcLayer by which the two layers should be
bound together.
on the action to invoke the action. Can be one of "click" (default) and "mouseover".
The action will be triggered by holding Ctrl-key and performing on.
group the group name for the object to be added to map.
layerlId the layerld.
options options to be passed to the layer. See e.g. pathOptions for details.
style named list of styling instructions for the geometries in x.
updateStyle named list of how to update the styling of the srcLayer.

addStarsImage 25

popup a character vector of the HTML content for the popups of layer x. See addControl
for details.

currently not used.

Examples

library(leaflet)
library(leafem)
library(sf)
library(geojsonsf)

create some random data

che = st_as_sf(gadmCHE)

if (require(lwgeom)) {
pts = st_as_sf(st_sample(che, 200))
pts = st_join(pts, che[, "ID_1"1)

che = sf_geojson(che)
leaflet() %>%
addTiles() %>%
addGeoJSON(che, group = "che") %>%
addReactiveFeatures(
pts
, srcLayer = "che”
, by = "ID_1"
, on = "click”
, group = "pts
, style = list(color = "black"”, fillOpacity = 0.3)
, updateStyle = list(
opacity = 0.3
, fillOpacity = 0.3
, color = "forestgreen”
, fillColor = "forestgreen"

”

)
) %>%
addMouseCoordinates() %>%
setView(lng = 8.31, lat = 46.75, zoom = 8)

addStarsImage Add stars layer to a leaflet map

Description

Add stars layer to a leaflet map

26 addStarsImage
Usage
addStarsImage(
map,
X ’
band = 1,
colors = "Spectral”,
opacity =1
attribution = NULL,
layerId = NULL,
group = NULL,
project = FALSE,
method = c("auto”, "bilinear"”, "near"),
maxBytes = 4 x 1024 x 1024,
options = gridOptions(),
data = getMapData(map),
)
Arguments
map a mapview or leaflet object.
X a stars layer.
band the band number to be plotted.
colors the color palette (see colorNumeric) or function to use to color the raster values
(hint: if providing a function, set na.color to "#00000000" to make NA areas
transparent). The palette is ignored if x is a SpatRaster with a color table or if it
has RGB channels.
opacity the base opacity of the raster, expressed from O to 1
attribution the HTML string to show as the attribution for this layer
layerlId the layer id
group the name of the group this raster image should belong to (see the same parameter
under addTiles)
project if TRUE, automatically project x to the map projection expected by Leaflet (EPSG: 3857);
if FALSE, it’s the caller’s responsibility to ensure that x is already projected, and
that extent(x) is expressed in WGS84 latitude/longitude coordinates
method the method used for computing values of the new, projected raster image. "bilinear”
(the default) is appropriate for continuous data, "ngb" - nearest neighbor - is ap-
propriate for categorical data. Ignored if project = FALSE. See projectRaster
for details.
maxBytes the maximum number of bytes to allow for the projected image (before base64
encoding); defaults to 4MB.
options a list of additional options, intended to be provided by a call to gridOptions
data the data object from which the argument values are derived; by default, it is the

data object provided to leaflet() initially, but can be overridden.

currently not used.

addStaticLabels 27

Details

This is an adaption of addRasterImage. See that documentation for details.

Examples

library(stars)
library(leaflet)

tif = system.file("tif/L7_ETMs.tif", package = "stars")
X = read_stars(tif)
leaflet() %>%
addProviderTiles("OpenStreetMap”) %>%
addStarsImage(x, project = TRUE)

addStaticlLabels Add static labels to leaflet or mapview objects

Description

Being a wrapper around addLabelOnlyMarkers, this function provides a smart-and-easy solution
to add custom text labels to an existing leaflet or mapview map object.

Usage
addStaticlLabels(map, data, label, group = NULL, layerId = NULL, ...)
Arguments
map A leaflet or mapview object.
data A sf or Spatialx* object used for label placement, defaults to the locations of
the first dataset in map’.
label The labels to be placed at the positions indicated by ’data’ as character, or any
vector that can be coerced to this type.
group the group of the static labels layer.
layerlId the layerld of the static labels layer.
Additional arguments passed to labelOptions.
Value
A labelled leaflet map
Author(s)

Florian Detsch, Lorenzo Busetto

28 addTileFolder

See Also
addLabelOnlyMarkers.

Examples

Not run:
leaflet label display options
library(leaflet)

lopt = labelOptions(noHide = TRUE,
direction = 'top',
textOnly = TRUE)

Add labels on a Leaflet map
indata <- sf::st_read(system.file("shape/nc.shp”, package="sf"))

leaflet(indata) %>%
addProviderTiles("OpenStreetMap”) %>%
addFeatures(.) %>%
addStaticlLabels(., label = indata$NAME)

Modify styling -

leaflet(indata) %>%
addProviderTiles("OpenStreetMap”) %>%
addFeatures(.) %>%
addStaticLabels(., label = indata$NAME,
style = list("color” = "red"”, "font-weight"” = "bold"))

End(Not run)

addTileFolder Add raster tiles from a local folder

Description

Add tiled raster data pyramids from a local folder that was created with gdal2tiles.py (see https:
//gdal.org/programs/gdal2tiles.html for details)

Usage

addTileFolder(
map,
folder,
tms = TRUE,
layerId = NULL,

https://gdal.org/programs/gdal2tiles.html
https://gdal.org/programs/gdal2tiles.html

colorOptions

29

group = NULL,
attribution = NULL,

options = leaflet::tileOptions(),
data = leaflet::getMapData(map)
)
Arguments
map a mapview or leaflet object.
folder the (top level) folder where the tiles (folders) reside.
tms whether the tiles are served as TMS tiles.
layerlId the layer id.
group the group name for the tile layer to be added to map.
attribution the attribution text of the tile layer (HTML).
options a list of extra options for tile layers. See tileOptions for details. When the
tiles were created with gdal2tiles.py argument tms needs to be set to TRUE.
data the data object from which the argument values are derived; by default, it is the
data object provided to leaflet() initially, but can be overridden.
colorOptions Color options for addGeoRaster and addGeotiff
Description

Color options

Usage

colorOption

palette =

breaks =
domain =
na.color

Arguments

palette

breaks
domain

na.color

for addGeoRaster and addGeotiff

s(

NULL,

NULL,

NULL,

= "#bebebe22"

the color palette to use. Can be a set of colors or a color generating function
such as the result of colorRampPalette.

the breaks at which color should change.
the value domain (min/max) within which color mapping should occur.

color for NA values (will map to NaN in Javascript).

30 imagequeryOptions

garnishMap Garnish/decorate leaflet or mapview maps.

Description

This function provides a versatile interface to add components to a leaflet or mapview map. It takes
functions such as "addMouseCoordinates" or addLayersControl and their respective arguments
and adds them to the map. Arguments must be named. Functions can be plain or character strings.

Usage
garnishMap(map, ...)
Arguments
map a mapview or leaflet object.
functions and their arguments to add things to a map.
Examples
library(leaflet)

m <- leaflet() %>% addProviderTiles("OpenStreetMap")
garnishMap(m, addMouseCoordinates)

add more than one with named argument
library(leaflet)

ml <- garnishMap(m, addScaleBar, addMouseCoordinates,
position = "bottomleft")
ml

imagequeryOptions Imagequery options for addGeoRaster, addGeotiff and addCOG

Description

Imagequery options for addGeoRaster, addGeotiff and addCOG

paintRules 31
Usage
imagequeryOptions(
className = "info legend”,
position = c("topright”, "topleft"”, "bottomleft”, "bottomright"),
type = c("mousemove”, "click"),
digits = NULL,
prefix = "Layer”
)
Arguments
className a character string to append to the control legend.
position where to place the display field. Default is "topright’.
type whether query should occur on ’mousemove’ or ’click’. Defaults to *mouse-
move’.
digits the number of digits to be shown in the display field.
prefix a character string to be shown as prefix for the layerld.
paintRules Styling options for PMTiles
Description

Styling options for PMTiles

Usage

paintRules(

layer,

fillColor = "#0033ff66",
color = "#0033ffcc”,

do_stroke = TRUE,
width = 0.5,
radius = 3,
stroke = "#000000",
opacity =1,
dash = NULL
)
Arguments
layer the name of the layer in the PMTiles file to visualise.
fillColor fill color for polygons
color line color
do_stroke logical, whether polygon borders should be drawn

32 updateLayersControl

width line width

radius point radius

stroke color point border

opacity point opacity

dash either ‘NULL* (default) for a solid line or a numeric vector of length 2 denoting

segment length and spce between segments (in pixels), e.g. ‘c(5, 3)°

updatelLayersControl Update the layer controls when adding layers to an existing map.

Description

When adding additional base layers or overlay layers to an existing map, updateLayersControl
will either update the existing layers control or add a new one if map has none.

Usage

updatelLayersControl(
map,
addBaseGroups = character(9),
addOverlayGroups = character(9),
position = "topleft”,

Arguments

map A leaflet or mapview map.

addBaseGroups group names of base layers to be added to layers control.
addOverlayGroups
group names of overlay layers to be added to layers control.

non

position position of control: "topleft", "topright”, "bottomleft", or "bottomright".

Further arguments passed to addLayersControl.

Value

A leaflet map object.

Examples

library(leaflet)

map = leaflet() %>%
addProviderTiles("OpenStreetMap”, group = "OSM") %>%
addProviderTiles("CartoDB.DarkMatter"”, group = "dark") %>%
addCircleMarkers(data = breweries91, group = "brew”)

updateLayersControl

map # no layers control

map %>%
updatelLayersControl (addBaseGroups = c("0SM", "dark"),
addOverlayGroups = "brew")

33

Index

addCircleMarkers, 5

addCogG, 2

addControl, 25
addCopyExtent, 4

addExtent, 5

addFeatures, 5,5

addFgb, 6

addGeoJSON, 24

addGeoRaster, 8
addGeotiff, 9, 10
addHomeButton, 12
addImageQuery, 13
addLabelOnlyMarkers, 27, 28
addLayersControl, 30, 32
addLocalFile, 15

addLogo, 16
addMouseCoordinates, 18
addPMPoints (addPMPolygons), 19
addPMPolygons, 19
addPMPolylines (addPMPolygons), 19
addPolygons, 5

addPolylines, 5
addRasterImage, 9, 11, 14, 23,27
addRasterRGB, 22
addReactiveFeatures, 24
addStarsImage, 14, 25
addStarsRGB (addRasterRGB), 22
addStaticlLabels, 27
addTileFolder, 28

addTiles, 26

clip2sfc (addMouseCoordinates), 18
colorNumeric, 26

colorOptions, 29
colorRampPalette, 29

garnishMap, 30
gridOptions, 26

hidelLogo (addLogo), 16

imagequeryOptions, 30
labelOptions, 27

paintRules, 20, 31
pathOptions, 24
plotRGB, 22
projectRaster, 23, 26

removeHomeButton (addHomeButton), 12

removelLogo (addLogo), 16

removeMouseCoordinates
(addMouseCoordinates), 18

sf, 5
showLogo (addLogo), 16

tileOptions, 3,9, 11, 29

updatelayersControl, 32
updatelogo (addLogo), 16

34

	addCOG
	addCopyExtent
	addExtent
	addFeatures
	addFgb
	addGeoRaster
	addGeotiff
	addHomeButton
	addImageQuery
	addLocalFile
	addLogo
	addMouseCoordinates
	addPMPolygons
	addRasterRGB
	addReactiveFeatures
	addStarsImage
	addStaticLabels
	addTileFolder
	colorOptions
	garnishMap
	imagequeryOptions
	paintRules
	updateLayersControl
	Index

