
Package: RSAGA (via r-universe)
August 18, 2024

Type Package

Title SAGA Geoprocessing and Terrain Analysis

Version 1.4.1

Date 2023-12-22

Description Provides access to geocomputing and terrain analysis
functions of the geographical information system (GIS) 'SAGA'
(System for Automated Geoscientific Analyses) from within R by
running the command line version of SAGA. This package
furthermore provides several R functions for handling ASCII
grids, including a flexible framework for applying local
functions (including predict methods of fitted models) and
focal functions to multiple grids. SAGA GIS is available under
GPL-2 / LGPL-2 licences from
<https://sourceforge.net/projects/saga-gis/>.

URL https://github.com/r-spatial/RSAGA

License GPL-2 | file LICENSE

Encoding UTF-8

SystemRequirements SAGA GIS (2.3 LTS - 8.4.1)

Depends R (>= 2.10), gstat, shapefiles, plyr

Imports stats, utils, stringr, magrittr

Suggests sf, sp, knitr, testthat, rmarkdown

LazyLoad yes

Collate 'gridtools.R' 'RSAGA-core.R' 'RSAGA-modules.R' 'RSAGA-utils.R'
'RSAGA-package.R' 'landslides.R'

VignetteBuilder knitr

RoxygenNote 7.2.0

Roxygen list(markdown = TRUE)

Repository https://r-spatial.r-universe.dev

RemoteUrl https://github.com/r-spatial/rsaga

RemoteRef HEAD

RemoteSha 985ec32d3d7f8069b436a49722c8537450e3b215

1

https://sourceforge.net/projects/saga-gis/
https://github.com/r-spatial/RSAGA


2 Contents

Contents
RSAGA-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
centervalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
create.variable.name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
focal.function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
grid.predict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
grid.to.xyz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
match.arg.ext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
multi.focal.function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
pick.from.points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
read.ascii.grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
relative.position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
resid.median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
rsaga.add.grid.values.to.points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
rsaga.close.gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
rsaga.contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
rsaga.copy.sgrd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
rsaga.env . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
rsaga.esri.to.sgrd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
rsaga.esri.wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
rsaga.fill.sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
rsaga.filter.gauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
rsaga.filter.simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
rsaga.geoprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
rsaga.get.modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
rsaga.get.modules.path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
rsaga.get.usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
rsaga.get.version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
rsaga.grid.calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
rsaga.grid.to.points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
rsaga.hillshade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
rsaga.html.help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
rsaga.import.gdal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
rsaga.insolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
rsaga.intersect.polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
rsaga.inverse.distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
rsaga.lib.prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
rsaga.local.morphometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
rsaga.parallel.processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
rsaga.pisr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
rsaga.pisr2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
rsaga.set.env . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
rsaga.sgrd.to.esri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
rsaga.sink.removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
rsaga.sink.route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
rsaga.slope.asp.curv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



RSAGA-package 3

rsaga.solar.radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
rsaga.target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
rsaga.topdown.processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
rsaga.union.polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
rsaga.wetness.index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
set.file.extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
wind.shelter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Index 97

RSAGA-package RSAGA: SAGA Geoprocessing and Terrain Analysis in R

Description

RSAGA provides direct access to SAGA GIS functions including, for example, a comprehensive set
of terrain analysis algorithms for calculating local morphometric properties (slope, aspect, curva-
ture), hydrographic characteristics (size, height, and aspect of catchment areas), and other process-
related terrain attributes (potential incoming solar radiation, topographic wetness index, and more).
In addition, (R)SAGA provides functions for importing and exporting different grid file formats,
and tools for preprocessing grids, e.g. closing gaps or filling sinks.

Details

RSAGA adds a framework for creating custom-defined focal functions, e.g. specialized filter and
terrain attributes such as the topographic wind shelter index, within R. This framework can be
used to apply predict methods of fitted statistical models to stacks of grids representing predictor
variables. Furthermore, functions are provided for conveniently picking values at point locations
from a grid using kriging or nearest neighbour interpolation.

RSAGA requires SAGA GIS (versions 2.3.1 LTS - 8.4.1) are currently supported) and its user-
contributed modules to be available on your computer. These can be downloaded under GPL from
https://sourceforge.net/projects/saga-gis/. Please check the help page for rsaga.env()
to make sure that RSAGA can find your local installation of SAGA. You may need to ’tell’ RSAGA
where to find SAGA GIS.

Thanks to Olaf Conrad, Andre Ringeler and all the other SAGA GIS developers and contributors
of this excellent geocomputing tool! Thanks to Rainer Hurling, Johan van de Wauw, Massimo Di
Stefano and others for helping to adapt SAGA to and test it on unix and Max OSX.

Author(s)

Alexander Brenning, Donovan Bangs and Marc Becker

References

Brenning, A., 2008. Statistical geocomputing combining R and SAGA: The example of landslide
susceptibility analysis with generalized additive models. In J. Boehner, T. Blaschke and L. Mon-
tanarella (eds.), SAGA - Seconds Out (= Hamburger Beitraege zur Physischen Geographie und
Landschaftsoekologie, vol. 19), p. 23-32.

https://sourceforge.net/projects/saga-gis/


4 create.variable.name

Conrad, O., Bechtel, M., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wichmann, V., & Boehner,
J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model
Development, 8, 1991-2007

centervalue Pick Center Value from Matrix

Description

Pick the value in the center of a square matrix. Auxiliary function to be used by functions called by
focal.function().

Usage

centervalue(x)

Arguments

x a square matrix

Details

See for example the code of resid.median().

See Also

focal.function(), resid.median()

Examples

( m <- matrix( round(runif(9,1,10)), ncol=3 ) )
centervalue(m)

create.variable.name Convert file name to variable name

Description

Convert a file name into a variable name

Usage

create.variable.name(filename, prefix = NULL, fsep = .Platform$file.sep)



focal.function 5

Arguments

filename character string

prefix character string: optional prefix to be added

fsep character used to separate path components

Examples

## Not run:
create.variable.name("C:/my-path/my-file-name.Rd",prefix="res")

## End(Not run)

focal.function Local and Focal Grid Functions

Description

focal.function cuts out square or circular moving windows from a grid (matrix) and applies a
user-defined matrix function to calculate e.g. a terrain attribute or filter the grid. The function is
suitable for large grid files as it can process them row by row. local.function represents the
special case of a moving window of radius 1. Users can define their own functions operating on
moving windows, or use simple functions such as median to define filters.

Usage

focal.function(
in.grid,
in.factor.grid,
out.grid.prefix,
path = NULL,
in.path = path,
out.path = path,
fun,
varnames,
radius = 0,
is.pixel.radius = TRUE,
na.strings = "NA",
valid.range = c(-Inf, Inf),
nodata.values = c(),
out.nodata.value,
search.mode = c("circle", "square"),
digits = 4,
hdr.digits = 10,
dec = ".",
quiet = TRUE,
nlines = Inf,



6 focal.function

mw.to.vector = FALSE,
mw.na.rm = FALSE,
...

)

gapply(in.grid, fun, varnames, mw.to.vector = TRUE, mw.na.rm = TRUE, ...)

local.function(...)

Arguments

in.grid file name of input ASCII grid, relative to in.path

in.factor.grid optional file name giving a gridded categorical variables defining zones; zone
boundaries are used as breaklines for the moving window (see Details)

out.grid.prefix

character string (optional), defining a file name prefix to be used for the output
file names; a dash (-) will separate the prefix and the varnames

path path in which to look for in.grid and write output grid files; see also in.path
and out.path, which overwrite path if they are specified

in.path path in which to look for in.grid (defaults to path)

out.path path in which to write output grid files; defaults to path

fun a function, or name of a function, to be applied on the moving window; see
Details

varnames character vector specifying the names of the variable(s) returned by fun; if miss-
ing, focal.function will try to determine the varnames from fun itself, or from
a call to fun if this is a function (see Details)

radius numeric value specifying the (circular or square) radius of the moving win-
dow; see is.pixel.radius and search.mode; note that all data within distance
<=radius will be included in the moving window, not <radius.

is.pixel.radius

logical: if TRUE (default), the radius will be interpreted as a (possibly non-
integer) number of pixels; if FALSE, it is interpreted as a radius measured in the
grid (map) units.

na.strings passed on to scan()

valid.range numeric vector of length 2, specifying minimum and maximum valid values
read from input file; all values <valid.range[1] or >valid.range[1] will be
converted to NA.

nodata.values numeric vector: any values from the input grid file that should be converted to
NA, in addition to the nodata value specified in the grid header

out.nodata.value

numeric: value used for storing NAs in the output file(s); if missing, use the same
nodata value as specified in the header of the input grid file

search.mode character, either "circle" (default) for a circular search window, or "square"
for a squared one.



focal.function 7

digits numeric, specifying the number of digits to be used for output grid file.
hdr.digits numeric, specifying the number of digits to be used for the header of the output

grid file (default: 10; see write.ascii.grid.header()).
dec character, specifying the decimal mark to be used for input and output.
quiet If TRUE, gives some output ("*") after every 10th line of the grid file and when

the job is done.
nlines Number of lines to be processed; useful for testing purposes.
mw.to.vector logical: Should the content of the moving window be coerced (from a matrix)

to a vector?
mw.na.rm logical: Should NAs be removed from moving window prior to passing the data

to fun? Only applicable when mw.to.vector=TRUE.
... Arguments to be passed to fun; local.function: arguments to be passed to

focal.function.

Details

focal.function passes a square matrix of size 2*radius+1 to the function fun if mw.to.vector=FALSE
(default), or a vector of length <=(2*radius+1)^2 if mw.to.vector=TRUE. This matrix or vector
will contain the content of the moving window, which may possibly contain NAs even if the in.grid
has no nodata values, e.g. due to edge effects. If search.mode="circle", values more than radius
units (pixels or grid units, depending on is.pixel.radius) away from the center pixel / matrix
entry will be set to NA. In addition, valid.range, nodata.values, and the nodata values speci-
fied in the in.grid are checked to assign further NAs to pixels in the moving window. Finally, if
in.factor.grid specifies zones, all pixels in the moving window that belong to a different zone
than the center pixel are set to NA, or, in other words, zone boundaries are used as breaklines.

The function fun should return a single numeric value or a numeric vector. As an example, the
function resid.minmedmax() returns the minimum, median and maximum of the difference be-
tween the values in the moving window and the value in the center grid cell. In addition to the
(first) argument receiving the moving window data, fun may have additional arguments; the ...
argument of focal.function is passed on to fun. resid.quantile() is a function that uses this
feature.

Optionally, fun should support the following feature: If no argument is passed to it, then it should
return a character vector giving variable names to be used for naming the output grids. The call
resid.minmedmax(), for example, returns c("rmin","rmed","rmax"); this vector must have the
same length as the numeric vector returned when moving window data is passed to the function.
This feature is only used if no varnames argument is provided. Note that the result is currently
being abbreviate()d to a length of 6 characters.

Input and output file names are built according to the following schemes:

Input: [<in.path>/]<in.grid>

Zones: [<in.path>/]<in.factor.grid> (if specified)

Output: [<out.path>/][<out.grid.prefix>-]<varnames>.asc

For the input files, .asc is used as the default file extension, if it is not specified by the user.

Value

focal.function and local.function return the character vector of output file names.



8 focal.function

Note

These functions are not very efficient ways of calculating e.g. (focal) terrain attributes compared
to for example the SAGA modules, but the idea is that you can easily specify your own functions
without starting to mess around with C code. For example try implementing a median filter as a
SAGA module... or just use the code shown in the example!

Author(s)

Alexander Brenning

References

Brenning, A. (2008): Statistical geocomputing combining R and SAGA: The example of landslide
susceptibility analysis with generalized additive models. In: J. Boehner, T. Blaschke, L. Mon-
tanarella (eds.), SAGA - Seconds Out (= Hamburger Beitraege zur Physischen Geographie und
Landschaftsoekologie, 19), 23-32.

See Also

multi.focal.function(), multi.local.function(), resid.median(), resid.minmedmax(),
relative.position(), resid.quantile(), resid.quartiles(), relative.rank(), wind.shelter(),
create.variable.name()

Examples

## Not run:
# A simple median filter applied to dem.asc:
gapply("dem","median",radius=3)
# Same:
#focal.function("dem",fun="median",radius=3,mw.to.vector=TRUE,mw.na.rm=TRUE)
# See how the filter has changed the elevation data:
d1 = as.vector(read.ascii.grid("dem")$data)
d2 = as.vector(read.ascii.grid("median")$data)
hist(d1-d2,br=50)

## End(Not run)
# Wind shelter index used by Plattner et al. (2004):
## Not run:
ctrl = wind.shelter.prep(6,-pi/4,pi/12,10)
focal.function("dem",fun=wind.shelter,control=ctrl,

radius=6,search.mode="circle")

## End(Not run)
# Or how about this, if "aspect" is local terrain exposure:
## Not run:
gapply("aspect","cos") # how "northerly-exposed" is a pixel?
gapply("aspect","sin") # how "easterly-exposed" is a pixel?
# Same result, but faster:
focal.function("aspect",fun=function(x) c(cos(x),sin(x)), varnames=c("cos","sin"))

## End(Not run)



grid.predict 9

grid.predict Helper function for applying predict methods to stacks of grids.

Description

This function can be used to apply the predict method of hopefully any fitted predictive model
pixel by pixel to a stack of grids representing the explanatory variables. It is intended to be called
primarily by multi.local.function() or multi.focal.function().

Usage

grid.predict(
fit,
predfun,
trafo,
control.predict,
predict.column,
trace = 0,
location,
...

)

Arguments

fit a model object for which prediction is desired

predfun optional prediction function; if missing, the fit’s predict() method is called.
In some cases it may be convenient to define a wrapper function for the predict
method that may be passed as predfun argument.

trafo an optional function(x) that takes a data.frame x and returns a data.frame
with the same number of rows; this is intended to perform transformations on
the input variables, e.g. derive a log-transformed variable from the raw input
read from the grids, or more complex variables such as the NDVI etc.; the
data.frame resulting from a call to trafo (if provided) is passed to predfun

control.predict

an optional list of arguments to be passed on to predfun; this may be e.g.
type="response" to obtain probability prediction maps from a logistic regres-
sion model

predict.column optional character string: Some predict methods (e.g. predict.lda) return a
data.frame with several columns, e.g. one column per class in a classification
problem. predict.column is used to pick the one that is of interest

trace integer >=0: positive values give more (=2) or less (=1) information on predictor
variables and predictions

location optional location data received from multi.focal.function; is added to the
newdata object that is passed on to predfun.



10 grid.predict

... these arguments are provided by the calling function, usually multi.local.function()
or multi.focal.function(). They contain the explanatory (predictor) vari-
ables required by the fit model.

Details

grid.predict is a simple wrapper function. First it binds the arguments in \dots together in a
data.frame with the raw predictor variables that have been read from their grids by the caller,
multi.local.function() (or multi.focal.function()). Then it calls the optional trafo func-
tion to transform or combine predictor variables (e.g. perform log transformations, ratioing, arith-
metic operations such as calculating the NDVI). Finally the predfun (or, typically, the default
predict() method of fit) is called, handing over the fit, the predictor data.frame, and the
optional control.predict arguments.

Value

grid.predict returns the result of the call to predfun or the default predict() method.

Note

Though grid.predict can in principle deal with predict methods returning factor variables, its
usual caller multi.local.function() / multi.focal.function() cannot; classification mod-
els should be dealt with by setting a type="prob" (for rpart) or type="response" (for logistic
regression and logistic additive model) argument, for example (see second Example below).

Author(s)

Alexander Brenning

References

Brenning, A. (2008): Statistical geocomputing combining R and SAGA: The example of landslide
susceptibility analysis with generalized additive models. In: J. Boehner, T. Blaschke, L. Mon-
tanarella (eds.), SAGA - Seconds Out (= Hamburger Beitraege zur Physischen Geographie und
Landschaftsoekologie, 19), 23-32.

See Also

focal.function(), multi.local.function(), multi.focal.function()

Examples

## Not run:
# Assume that d is a data.frame with point observations
# of a numerical response variable y and predictor variables
# a, b, and c.
# Fit a generalized additive model to y,a,b,c.
# We want to model b and c as nonlinear terms:
require(gam)
fit <- gam(y ~ a + s(b) + s(c), data = d)
multi.local.function(in.grids = c("a", "b", "c"),



grid.to.xyz 11

out.varnames = "pred",
fun = grid.predict, fit = fit )
# Note that the 'grid.predict' uses by default the
# predict method of 'fit'.

# Model predictions are written to a file named pred.asc

## End(Not run)

## Not run:
# A fake example of a logistic additive model:
require(gam)
fit <- gam(cl ~ a + s(b) + s(c), data = d, family = binomial)
multi.local.function(in.grids = c("a", "b", "c"),

out.varnames = "pred",
fun = grid.predict, fit = fit,
control.predict = list(type = "response") )
# 'control.predict' is passed on to 'grid.predict', which
# dumps its contents into the arguments for 'fit''s
# 'predict' method.

# Model predictions are written to a file named pred.asc

## End(Not run)

grid.to.xyz Convert Grid Matrix to (x,y,z) data.frame

Description

Convert a grid matrix to a (x,y,z) data.frame.

Usage

grid.to.xyz(data, header, varname = "z", colnames = c("x", "y", varname))

Arguments

data grid data: either a grid data matrix, or a list with components data (a matrix with
the grid data) and header (the grid header information); see read.ascii.grid()
for details

header optional list giving grid header information; see read.ascii.grid() for details

varname character: name to be assigned to the column with the z values in the output
data.frame

colnames names to be given to the columns corresponding to the x and y coordinates and
the grid variable in the output data.frame

Value

a data.frame with three columns (names are specified in the colnames argument) giving the x and
y coordinates and the attribute values at the locations given by the grid data.



12 landslides

See Also

read.ascii.grid(), pick.from.ascii.grid()

Examples

## Not run:
d = read.ascii.grid("dem")
xyz = grid.to.xyz(d,varname="elevation")
str(xyz)

## End(Not run)

landslides Landslide inventory, study area mask and DEM

Description

Landslide data

Format

The landslides dataset consists of three objects:

1. landslides A dataframe of 1535 rows and 3 variables representing landslide initiation points
in the Reserva Biologica San Francisco (RBSF) area of the tropical Andes in Southern Ecuador.
The variables are:

• lslpts landslide initiation point (boolean)
• x and y Coordinates of coordinate reference system UTM zone 17S (EPSG: 32717)

The landslide inventory was mapped by Stoyan (2000) in the field and by the presence of
landslide scars in aerial imagery.

2. dem Digital elevation model given as a .Rd grid, i.e. a list consisting of the elements header
(nine properties) and data (grid elevation values in m a.s.l.). The 10 m x 10 m digital elevation
model was triangulated from aerial imagery as described by Jordan et al. (2005) and provided
as a courtesy of Lars Ungerechts (2010).

3. study_area An sf-object representing the outlines of the natural part of the RBSF study area.

Details

Landslide data provided here are a subset of that used by Muenchow et al. (2012) to predict spa-
tially landslide susceptibility using generalized additive models (GAMs). Specifically, the here
provided landslides belong to the "natural" part of the RBSF area. Please refer also to the accom-
panying vignette for an introductory tutorial on the use of the RSAGA package for terrain analysis,
geoprocessing, and model-building using these data.

Note

Please note that loading landslides overwrites existing objects named dem, landslides and
study_area.



match.arg.ext 13

Source

DEM:

Ungerechts, L. (2010): DEM 10m (triangulated from aerial photo - b/w). Available online: http:
//vhrz669.hrz.uni-marburg.de/tmf_respect/data_pre.do?citid=901

Jordan, E., Ungerechts, L., Caceres, B. Penafiel, A. and Francou, B. (2005): Estimation by pho-
togrammetry of the glacier recession on the Cotopaxi Volcano (Ecuador) between 1956 and 1997.
Hydrological Sciences 50, 949-961.

Landslide Data:

Muenchow, J., Brenning, A., Richter, R. (2012): Geomorphic process rates of landslides along a hu-
midity gradient in the tropical Andes, Geomorphology 139-140, 271-284. DOI: 10.1016/j.geomorph.2011.10.029.

Stoyan, R. (2000): Aktivitaet, Ursachen und Klassifikation der Rutschungen in San Francisco/Suedecuador.
Unpublished diploma thesis, University of Erlangen-Nuremberg, Germany.

Examples

## Not run:
library("RSAGA")
data(landslides)

# Print the DEM header:
dem$header

# Write the DEM to a SAGA grid:
write.sgrd(data = dem, file = "dem", header = dem$header, env = env)

# Calculate slope of DEM:
rsaga.slope(in.dem = "dem", out.slope = "slope", method = "poly2zevenbergen")

# Pick slope values at landslide points,
# added to landslides data.frame as variable "slope":
landslides <- pick.from.saga.grid(data = landslides,

filename = "slope",
varname = "slope")

## End(Not run)

match.arg.ext Extended Argument Matching

Description

match.arg.ext matches arg against a set of candidate values as specified by choices; it extends
match.arg() by allowing arg to be a numeric identifier of the choices.

http://vhrz669.hrz.uni-marburg.de/tmf_respect/data_pre.do?citid=901
http://vhrz669.hrz.uni-marburg.de/tmf_respect/data_pre.do?citid=901


14 match.arg.ext

Usage

match.arg.ext(
arg,
choices,
base = 1,
several.ok = FALSE,
numeric = FALSE,
ignore.case = FALSE

)

Arguments

arg a character string or numeric value

choices a character vector of candidate values

base numeric value, specifying the numeric index assigned to the first element of
choices

several.ok logical specifying if arg should be allowed to have more than one element

numeric logical specifying if the function should return the numerical index (counting
from base) of the matched argument, or, by default, its name

ignore.case logical specifying if the matching should be case sensitive

Details

When choices are missing, they are obtained from a default setting for the formal argument arg of
the function from which match.arg.ext was called.

Matching is done using pmatch() (indirectly through a call to match.arg(), so arg may be abbre-
viated.

If arg is numeric, it may take values between base and length(choices)+base-1. base=1 will
give standard 1-based R indices, base=0 will give indices counted from zero as used to identify
SAGA modules in library RSAGA.

Value

If numeric is false and arg is a character string, the function returns the unabbreviated version of
the unique partial match of arg if there is one; otherwise, an error is signalled if several.ok is
false, as per default. When several.ok is true and there is more than one match, all unabbreviated
versions of matches are returned.

If numeric is false but arg is numeric, match.arg.ext returns name of the match corresponding
to this index, counting from base; i.e. arg=base corresponds to choices[1].

If numeric is true, the function returns the numeric index(es) of the partial match of arg, counted
from base to length(choices)+base-1. If arg is already numeric, the function only checks
whether it falls into the valid range from arg to length(choices)+base-1 and returns arg.

Author(s)

Alexander Brenning



multi.focal.function 15

See Also

match.arg(), pmatch()

Examples

# Based on example from 'match.arg':
require(stats)
center <- function(x, type = c("mean", "median", "trimmed")) {

type <- match.arg.ext(type,base=0)
switch(type,

mean = mean(x),
median = median(x),
trimmed = mean(x, trim = .1))

}
x <- rcauchy(10)
center(x, "t") # Works
center(x, 2) # Same, for base=0
center(x, "med") # Works
center(x, 1) # Same, for base=0
try(center(x, "m")) # Error

multi.focal.function Local and Focal Grid Function with Multiple Grids as Inputs

Description

multi.focal.function cuts out square or circular moving windows from a stack of grids (matri-
ces) and applies a user-defined matrix function that takes multiple arguments to this data. multi.local.function
is a more efficiently coded special case of moving windows of size 0, i.e. functions applied to in-
dividual grid cells of a stack of grids. This is especially useful for applying predict methods
of statistical models to a stack of grids containing the explanatory variables (see Examples and
grid.predict()). The function is suitable for large grid files as it can process them row by row;
but it may be slow because one call to the focal function is generated for each grid cell.

Usage

multi.focal.function(
in.grids,
in.grid.prefix,
in.factor.grid,
out.grid.prefix,
path = NULL,
in.path = path,
out.path = path,
fun,
in.varnames,
out.varnames,
radius = 0,



16 multi.focal.function

is.pixel.radius = TRUE,
na.strings = "NA",
valid.ranges,
nodata.values = c(),
out.nodata.value,
search.mode = c("circle", "square"),
digits = 4,
hdr.digits = 10,
dec = ".",
quiet = TRUE,
nlines = Inf,
mw.to.vector = FALSE,
mw.na.rm = FALSE,
pass.location = FALSE,
...

)

multi.local.function(
in.grids,
in.grid.prefix,
out.grid.prefix,
path = NULL,
in.path = path,
out.path = path,
fun,
in.varnames,
out.varnames,
na.strings = "NA",
valid.ranges,
nodata.values = c(),
out.nodata.value,
digits = 4,
hdr.digits = 10,
dec = ".",
quiet = TRUE,
nlines = Inf,
na.action = stats::na.exclude,
pass.location = FALSE,
...

)

Arguments

in.grids character vector: file names of input ASCII grids, relative to in.path; in.grid.prefix
will be used as a prefix to the file name if specified; default file extension: .asc

in.grid.prefix character string (optional), defining a file name prefix to be used for the input
file names; a dash (-) will separate the prefix and the in.varnames

in.factor.grid optional file name giving a gridded categorical variables defining zones; zone



multi.focal.function 17

boundaries are used as breaklines for the moving window (see Details)
out.grid.prefix

character string (optional), defining a file name prefix to be used for the output
file names; a dash (-) will separate the prefix and the out.varnames

path path in which to look for in.grids and write output grid files; see also in.path
and out.path, which overwrite path if they are specified

in.path path in which to look for in.grids (defaults to path)

out.path path in which to write output grid files; defaults to path

fun a function, or name of a function, to be applied on the moving window; see
Details; fun is expected to accept named arguments with the names given by
in.varnames; grid.predict() is a wrapper function that can be used for ap-
plying a model’s predict method to a stack of grids; see Details. In multi.local.function,
fun must be able to process arguments that are vectors of equal length (e.g., a
vector of 50 slope angles, another vector of 50 elevation values, etc.).

in.varnames character vector: names of the variables corresponding to the in.grids; if miss-
ing, same as in.grids; if specified, must have the same length and order as
in.grids

out.varnames character vector specifying the name(s) of the variable(s) returned by fun; if
missing, multi.focal.function will try to determine the varnames from fun
itself, or or from a call to fun if this is a function (see Details)

radius numeric value specifying the (circular or square) radius of the moving win-
dow; see is.pixel.radius and search.mode; note that all data within distance
<=radius will be included in the moving window, not <radius.

is.pixel.radius

logical: if TRUE (default), the radius will be interpreted as a (possibly non-
integer) number of pixels; if FALSE, it is interpreted as a radius measured in the
grid (map) units.

na.strings passed on to scan()

valid.ranges optional list of length length(in.grids) with numeric vector of length 2, spec-
ifying minimum and maximum valid values read from input file; all values
<valid.ranges[[i]][1] or >valid.ranges[[i]][1] will be converted to NA.

nodata.values numeric vector: any values from the input grid file that should be converted to
NA, in addition to the nodata value specified in the grid header

out.nodata.value

numeric: value used for storing NAs in the output file(s); if missing, use the same
nodata value as specified in the header of the input grid file

search.mode character, either "circle" (default) for a circular search window, or "square"
for a squared one.

digits numeric, specifying the number of digits to be used for output grid file.

hdr.digits numeric, specifying the number of digits to be used for the header of the output
grid file (default: 10; see write.ascii.grid.header()).

dec character, specifying the decimal mark to be used for input and output.

quiet If FALSE, gives some output ("*") after every 10th line of the grid file and when
the job is done.



18 multi.focal.function

nlines Number of lines to be processed; useful for testing purposes.
mw.to.vector logical: Should the content of the moving window be coerced (from a matrix)

to a vector?
mw.na.rm logical: Should NAs be removed from moving window prior to passing the data

to fun? Only applicable when mw.to.vector=TRUE.
pass.location logical: Should the x,y coordinates of grid points (center of grid cells) be passed

to fun? If TRUE, two additional arguments named arguments x and y are passed
to fun; NOTE: This currently only works for radius=0, otherwise a warning is
produced and pass.location is reset to FALSE.

... Arguments to be passed to fun; local.function: arguments to be passed to
focal.function.

na.action function: determines if/how NA values are omitted from the stack of input vari-
ables; use na.exclude() (default) or na.pass() if fun can handle NA values
correctly

Details

multi.local.function is probably most useful for applying the predict method of a fitted
model to a grids representing the predictor variables. An example is given below and in more
detail in Brenning (2008) (who used multi.focal.function for the same purpose); see also
grid.predict().

multi.local.function is essentially the same as multi.focal.function for radius=0, but
coded MUCH more efficiently. (The relevant code will eventually migrate into multi.focal.function
as well, but requires further testing.) Applying a GAM to the data set of Brenning (2008) takes about
1/100th the time with multi.local.function compared to multi.focal.function.

multi.focal.function extends focal.function() by allowing multiple input grids to be passed
to the focal function fun operating on moving windows. It passes square matrices of size 2*radius+1
to the function fun if mw.to.vector=FALSE (default), or a vector of length <=(2*radius+1)^2 if
mw.to.vector=TRUE; one such matrix or vector per input grid will be passed to fun as an argument
whose name is specified by in.varnames.

These matrices or vectors will contain the content of the moving window, which may possibly con-
tain NAs even if the in.grid has no nodata values, e.g. due to edge effects. If search.mode="circle",
values more than radius units (pixels or grid units, depending on is.pixel.radius) away from
the center pixel / matrix entry will be set to NA. In addition, valid.range, nodata.values, and the
nodata values specified in the in.grid are checked to assign further NAs to pixels in the moving
window. Finally, if in.factor.grid specifies zones, all pixels in the moving window that belong
to a different zone than the center pixel are set to NA, or, in other words, zone boundaries are used
as breaklines.

The function fun should return a single numeric value or a numeric vector, such as a regression
result or a vector of class probabilities returned by a soft classifier. In addition to the named argu-
ments receiving the moving window data, fun may have additional arguments; the ... argument of
focal.function is passed on to fun. grid.predict() uses this feature.

Optionally, fun should support the following feature: If no argument is passed to it, then it should
return a character vector giving variable names to be used for naming the output grids.

For the input files, .asc is used as the default file extension, if it is not specified by the user.

See focal.function() for details.



multi.focal.function 19

Value

multi.focal.function returns the character vector of output file names.

Note

multi.focal.function can do all the things focal.function() can do.

Author(s)

Alexander Brenning

References

Brenning, A. (2008): Statistical geocomputing combining R and SAGA: The example of landslide
susceptibility analysis with generalized additive models. In: J. Boehner, T. Blaschke, L. Mon-
tanarella (eds.), SAGA - Seconds Out (= Hamburger Beitraege zur Physischen Geographie und
Landschaftsoekologie, 19), 23-32.

See Also

focal.function(), grid.predict()

Examples

## Not run:
# Assume that d is a data.frame with point observations
# of a numerical response variable y and predictor variables
# a, b, and c.
# Fit a generalized additive model to y,a,b,c.
# We want to model b and c as nonlinear terms:
require(gam)
fit <- gam(y ~ a + s(b) + s(c), data = d)
multi.local.function(in.grids = c("a", "b", "c"),

out.varnames = "pred",
fun = grid.predict, fit = fit )
# Note that the 'grid.predict' uses by default the
# predict method of 'fit'.

# Model predictions are written to a file named pred.asc

## End(Not run)

## Not run:
# A fake example of a logistic additive model:
require(gam)
fit <- gam(cl ~ a + s(b) + s(c), data = d, family = binomial)
multi.local.function(in.grids = c("a", "b", "c"),

out.varnames = "pred",
fun = grid.predict, fit = fit,
control.predict = list(type = "response") )
# 'control.predict' is passed on to 'grid.predict', which
# dumps its contents into the arguments for 'fit''s



20 pick.from.points

# 'predict' method.
# Model predictions are written to a file named pred.asc

## End(Not run)

pick.from.points Pick Variable from Spatial Dataset

Description

These functions pick (i.e. interpolate without worrying too much about theory) values of a spatial
variables from a data stored in a data.frame, a point shapefile, or an ASCII or SAGA grid, using
nearest neighbor or kriging interpolation. pick.from.points and [internal.]pick.from.ascii.grid
are the core functions that are called by the different wrappers.

Usage

pick.from.points(
data,
src,
pick,
method = c("nearest.neighbour", "krige"),
set.na = FALSE,
radius = 200,
nmin = 0,
nmax = 100,
sill = 1,
range = radius,
nugget = 0,
model = vgm(sill - nugget, "Sph", range = range, nugget = nugget),
log = rep(FALSE, length(pick)),
X.name = "x",
Y.name = "y",
cbind = TRUE

)

pick.from.shapefile(data, shapefile, X.name = "x", Y.name = "y", ...)

pick.from.ascii.grid(
data,
file,
path = NULL,
varname = NULL,
prefix = NULL,
method = c("nearest.neighbour", "krige"),
cbind = TRUE,
parallel = FALSE,



pick.from.points 21

nsplit,
quiet = TRUE,
...

)

pick.from.ascii.grids(
data,
file,
path = NULL,
varname = NULL,
prefix = NULL,
cbind = TRUE,
quiet = TRUE,
...

)

internal.pick.from.ascii.grid(
data,
file,
path = NULL,
varname = NULL,
prefix = NULL,
method = c("nearest.neighbour", "krige"),
nodata.values = c(-9999, -99999),
at.once,
quiet = TRUE,
X.name = "x",
Y.name = "y",
nlines = Inf,
cbind = TRUE,
range,
radius,
na.strings = "NA",
...

)

pick.from.saga.grid(
data,
filename,
path,
varname,
prec = 7,
show.output.on.console = FALSE,
env = rsaga.env(),
...

)



22 pick.from.points

Arguments

data data.frame giving the coordinates (in columns specified by X.name, Y.name) of
point locations at which to interpolate the specified variables or grid values

src data.frame

pick variables to be picked (interpolated) from src; if missing, use all available vari-
ables, except those specified by X.name and Y.name

method interpolation method to be used; uses a partial match to the alternatives "nearest.neighbor"
(currently the default) and "krige"

set.na logical: if a column with a name specified in pick already exists in data, how
should it be dealt with? set.na=FALSE (default) only overwrites existing data if
the interpolator yields a non-NA result; set.na=TRUE passes NA values returned
by the interpolator on to the results data.frame

radius numeric value specifying the radius of the local neighborhood to be used for
interpolation; defaults to 200 map units (presumably meters), or, in the functions
for grid files, 2.5*cellsize.

nmin numeric, for method="krige" only: see gstat::krige() function in package
gstat

nmax numeric, for method="krige" only: see gstat::krige() function in package
gstat

sill numeric, for method="krige" only: the overall sill parameter to be used for the
variogram

range numeric, for method="krige" only: the variogram range

nugget numeric, for method="krige" only: the nugget effect

model for method="krige" only: the variogram model to be used for interpolation;
defaults to a spherical variogram with parameters specified by the range, sill,
and nugget arguments; see gstat::vgm() in package gstat for details

log logical vector, specifying for each variable in pick if interpolation should take
place on the logarithmic scale (default: FALSE)

X.name name of the variable containing the x coordinates

Y.name name of the variable containing the y coordinates

cbind logical: shoud the new variables be added to the input data.frame (cbind=TRUE,
the default), or should they be returned as a separate vector or data.frame?
cbind=FALSE

shapefile point shapefile

... arguments to be passed to pick.from.points, and to internal.pick.from.ascii.grid
in the case of pick.from.ascii.grid

file file name (relative to path, default file extension .asc) of an ASCII grid from
which to pick a variable, or an open connection to such a file

path optional path to file

varname character string: a variable name for the variable interpolated from grid file
file in pick.from.*.grid; if missing, variable name will be determined from
filename by a call to create.variable.name()



pick.from.points 23

prefix an optional prefix to be added to the varname

parallel logical (default: FALSE): enable parallel processing; requires additional pack-
ages such as doSNOW or doMC. See example below and plyr::ddply()

nsplit split the data.frame data in nsplit disjoint subsets in order to increase effi-
ciency by using plyr::ddply() in package plyr. The default seems to perform
well in many situations.

quiet logical: provide information on the progress of grid processing on screen? (only
relevant if at.once=FALSE and method="nearest.neighbour")

nodata.values numeric vector specifying grid values that should be converted to NA; in addition
to the values specified here, the nodata value given in the input grid’s header will
be used

at.once logical: should the grid be read as a whole or line by line? at.once=FALSE is
useful for processing large grids that do not fit into memory; the argument is
currently by default FALSE for method="nearest.neighbour", and it currently
MUST be TRUE for all other methods (in these cases, TRUE is the default value);
piecewise processing with at.once=FALSE is always faster than processing the
whole grid at.once

nlines numeric: stop after processing nlines lines of the input grid; useful for testing
purposes

na.strings passed on to scan()

filename character: name of a SAGA grid file, default extension .sgrd

prec numeric, specifying the number of digits to be used in converting a SAGA grid
to an ASCII grid in pick.from.saga.grid

show.output.on.console

a logical (default: FALSE), indicates whether to capture the output of the com-
mand and show it on the R console (see system(), rsaga.geoprocessor()).

env list: RSAGA geoprocessing environment created by rsaga.env()

Details

pick.from.points interpolates the variables defined by pick in the src data.frame to the locations
provided by the data data.frame. Only nearest neighbour and ordinary kriging interpolation are
currently available. This function is intended for ’data-rich’ situations in which not much thought
needs to be put into a geostatistical analysis of the spatial structure of a variable. In particular, this
function is supposed to provide a simple, ’quick-and-dirty’ interface for situations where the src
data points are very densely distributed compared to the data locations.

pick.from.shapefile is a front-end of pick.from.points for point shapefiles.

pick.from.ascii.grid retrieves data values from an ASCII raster file using either nearest neigh-
bour or ordinary kriging interpolation. The latter may not be possible for large raster data sets
because the entire grid needs to be read into an R matrix. Split-apply-combine strategies are used
to improve efficiency and allow for parallelization.

The optional parallelization of pick.from.ascii.grid computation requires the use of a parallel
backend package such as doSNOW or doMC, and the parallel backend needs to be registered
before calling this function with parallel=TRUE. The example section provides an example using



24 pick.from.points

doSNOW on Windows. I have seen 25-40% reduction in processing time by parallelization in some
examples that I ran on a dual core Windows computer.

pick.from.ascii.grids performs multiple pick.from.ascii.grid calls. File path and prefix
arguments may be specific to each file (i.e. each may be a character vector), but all interpola-
tion settings will be the same for each file, limiting the flexibility a bit compared to individual
pick.from.ascii.grid calls by the user. pick.from.ascii.grids currently processes the files
sequentially (i.e. parallelization is limited to the pick.from.ascii.grid calls within this func-
tion).

pick.from.saga.grid is the equivalent to pick.from.ascii.grid for SAGA grid files. It simply
converts the SAGA grid file to a (temporary) ASCII raster file and applies pick.from.ascii.grid.

internal.pick.from.ascii.grid is an internal ’workhorse’ function that by itself would be very
inefficient for large data sets data. This function is called by pick.from.ascii.grid, which uses
a split-apply-combine strategy implemented in the plyr package.

Value

If cbind=TRUE, columns with the new, interpolated variables are added to the input data.frame data.

If cbind=FALSE, a data.frame only containing the new variables is returned (possibly coerced to a
vector if only one variable is processed).

Note

method="krige" requires the gstat package.

pick.from.shapefile requires the shapefiles package.

The nearest neighbour interpolation currently randomly breaks ties if pick.from.points is used,
and in a deterministic fashion (rounding towards greater grid indices, i.e. toward south and east) in
the grid functions.

Author(s)

Alexander Brenning

References

Brenning, A. (2008): Statistical geocomputing combining R and SAGA: The example of landslide
susceptibility analysis with generalized additive models. In: J. Boehner, T. Blaschke, L. Mon-
tanarella (eds.), SAGA - Seconds Out (= Hamburger Beitraege zur Physischen Geographie und
Landschaftsoekologie, 19), 23-32.

See Also

grid.to.xyz(), %vgm(), krige(), read.ascii.grid(), write.ascii.grid()

Examples

## Not run:
# assume that 'dem' is an ASCII grid and d a data.frame with variables x and y
pick.from.ascii.grid(d, "dem")



read.ascii.grid 25

# parallel processing on Windows using the doSNOW package:
require(doSNOW)
registerDoSNOW(cl <- makeCluster(2, type = "SOCK")) # DualCore processor
pick.from.ascii.grid(d, "dem", parallel = TRUE)
# produces two (ignorable) warning messages when using doSNOW
# typically 25-40% faster than the above on my DualCore notebook
stopCluster(cl)

## End(Not run)

## Not run:
# use the meuse data for some tests:
require(gstat)
data(meuse)
data(meuse.grid)
meuse.nn = pick.from.points(data=meuse.grid, src=meuse,

pick=c("cadmium","copper","elev"), method="nearest.neighbour")
meuse.kr = pick.from.points(data=meuse.grid, src=meuse,

pick=c("cadmium","copper","elev"), method="krige", radius=100)
# it does make a difference:
plot(meuse.kr$cadmium,meuse.nn$cadmium)
plot(meuse.kr$copper,meuse.nn$copper)
plot(meuse.kr$elev,meuse.nn$elev)

## End(Not run)

read.ascii.grid Read/write ASCII, SAGA and Rd Grid Files

Description

These functions provide simple interfaces for reading and writing grids from/to ASCII grids and Rd
files. Grids are stored as matrices, their headers in lists.

Usage

read.ascii.grid(
file,
return.header = TRUE,
print = 0,
nodata.values = c(),
at.once = TRUE,
na.strings = "NA"

)

read.ascii.grid.header(file, ...)

read.sgrd(
fname,



26 read.ascii.grid

return.header = TRUE,
print = 0,
nodata.values = c(),
at.once = TRUE,
prec = 7,
...

)

read.Rd.grid(fname, return.header = TRUE)

write.ascii.grid(
data,
file,
header = NULL,
write.header = TRUE,
digits,
hdr.digits = 10,
dec = ".",
georef = "corner"

)

write.ascii.grid.header(file, header, georef, dec = ".", hdr.digits = 10)

write.sgrd(
data,
file,
header = NULL,
prec = 7,
hdr.prec = 10,
georef = "corner",
...

)

write.Rd.grid(data, file, header = NULL, write.header = TRUE, compress = TRUE)

Arguments

file file name of an ASCII grid (extension defaults to .asc if not specified), or a
connection open for reading or writing, as required

return.header logical: should the grid header be returned (default), or just the grid data matrix?
In the former case, read.ascii.grid returns a list with two components named
data and header.

print numeric, specifying how detailed the output reporting the progress should be
(currently 0 to 2, 0 being minimum output).

nodata.values optional numeric vector specifying nodata values to be used in addition to the
nodata value specified in the grid header; nodata values are converted to NA.

at.once logical: if TRUE, read the whole grid with one scan command; if FALSE, read it
row by row using scan with option nlines=1.



read.ascii.grid 27

na.strings passed on to scan().

... read.sgrd, write.sgrd: additional arguments to be passed to rsaga.geoprocessor

fname file name of a grid stored as an R (.Rd) file; extension defaults to .Rd

prec integer: number of digits of temporary ASCII grid used for importing or export-
ing a SAGA grid

data grid data: a data matrix, or a list with components data (the grid data matrix)
and header (the grid header information).

header optional list argument specifying the grid header information as returned by the
read.ascii.grid or read.ascii.grid.header function; see Details

write.header logical: should the header be written with the grid data? (default: TRUE)

digits numeric: if not missing, write data rounded to this many decimal places

hdr.digits numeric: see hdr.prec

dec character (default: "."): decimal mark used in input or output file

georef character: specifies whether the output grid should be georeferenced by the
"center" or "corner" of its lower left grid cell; defaults to "corner".

hdr.prec numeric: write (non-integer) header data with this many decimal places; a value
of 9 or higher is recommended for compatibility with SAGA GIS (default: 10)

compress logical: should the .Rd file written by write.Rd.file be compressed? (default:
TRUE)

Value

The read.* functions return either a list with components data (the grid data matrix) and header
(the grid header information, see below), if return.header=TRUE, or otherwise just the grid data
matrix return.header=FALSE.

The grid data matrix is a numeric matrix whose first column corrensponds to the first (i.e. northern-
most) row of the grid. Columns run from left = West to right = East.

The header information returned by the read.ascii.grid[.header] functions (if return.header=TRUE)
is a list with the following components:

ncols Number of grid columns.

nrows Number of grid rows.

xllcorner x coordinate of the corner of the lower left grid cell.

yllcorner y coordinate of the corner of the lower left grid cell.

cellsize Single numeric value specifying the size of a grid cell or pixel in both x and y
direction.

nodata_value Single numeric value being interpreted as NA (typically -9999.

xllcenter x coordinate of the center of the lower left grid cell

yllcenter y coordinate of the center of the lower left grid cell

Note: The order of the components, especially of ?llcorner and ?llcenter, may change, depend-
ing on the order in which they appear in the grid header and on the georeferencing method (center
or corner) used for the grid. The ?llcorner and ?llcenter attributes differ only by cellsize/2.



28 relative.position

Note

read.sgrd and write.sgrd import/export grids indirectly by creating temporary ASCII grid files
(this explains why write.sgrd has prec and hdr.prec arguments). Consider using sf::read_sf()
in package sf instead, which is likely more efficient but may require coercion of your gridded data
to/from an object supported by sf.

The read.Rd.grid and write.Rd.grid functions use the load and save commands to store a grid.
The variable name used is data, which is either a numeric matrix or a list with components data
(the grid data matrix) and header (the grid header information).

Author(s)

Alexander Brenning

See Also

sf::read_sf() and sf::write_sf() in package sf, and readAsciiGrid and writeAsciiGrid
in package maptools

relative.position Relative Topographic Position

Description

relative.position and relative.rank are used with focal.function() to determine the rela-
tive value of a grid cell compared to its surroundings, either on a metric scale or based on ranks.

Usage

relative.position(x)

relative.rank(x, ties.method = "average")

Arguments

x a square matrix with the grid data from the moving window, possibly containing
NA values

ties.method see rank()

Value

If x is provided, a numeric value in the interval [0,1] is returned.

If x is missing, a character vector of same length giving suggested variable (or file) names, here
"relpos" and "relrank", respectively. See focal.function() for details.

See Also

focal.function(), rank(), centervalue()



resid.median 29

Examples

m = matrix( round(runif(9,1,10)), ncol=3 )
print(m)
relative.position(m)
relative.rank(m)
## Not run:
focal.function("dem",fun=relative.rank,radius=5)
focal.function("dem",fun=relative.position,radius=5)
relrank = as.vector(read.ascii.grid("relrank")$data)
relpos = as.vector(read.ascii.grid("relpos")$data)
plot(relpos,relrank,pch=".")
cor(relpos,relrank,use="complete.obs",method="pearson")

## End(Not run)

resid.median Residual Median and Quantile Filters for Grids

Description

These functions use the median and other quantiles to describe the difference between a grid value
and its neighborhood. They are designed for use with focal.function().

Usage

## S3 method for class 'median'
resid(x)

## S3 method for class 'minmedmax'
resid(x)

## S3 method for class 'quantile'
resid(x, probs)

## S3 method for class 'quartiles'
resid(x)

Arguments

x a square matrix with the grid data from the moving window, possibly containing
NA values

probs numeric vector of probabilities in [0,1] to be passed to quantile()



30 rsaga.add.grid.values.to.points

Details

These functions are designed for being called by focal.function(), which repeatedly passes the
contents of a square or circular moving window to these functions.

The resid.median function rests the value of the central grid cell from the median of the whole
moving window. Thus, in terms of topography, a positive residual median indicates that this grid
cell stands out compared to its surroundings. resid.quantile gives more flexibility in designing
such residual attributes.

Value

If x is provided, a numeric vector of length 1 (resid.median), 3 (resid.minmedmax and resid.quartiles),
or length(probs) (resid.quantile).

If x is missing, a character vector of same length giving suggested variable (or file) names, such as
"rmed". See focal.function() for details.

See Also

focal.function(), quantile(), median(), centervalue()

rsaga.add.grid.values.to.points

Add Grid Values to Point Shapefile

Description

Pick values from SAGA grids and attach them as a new variables to a point shapefile.

Usage

rsaga.add.grid.values.to.points(
in.shapefile,
in.grids,
out.shapefile,
method = c("nearest.neighbour", "bilinear", "idw", "bicubic.spline", "b.spline"),
...

)

Arguments

in.shapefile Input point shapefile (default extension: .shp).

in.grids Input: character vector with names of (one or more) SAGA GIS grid files to be
converted into a point shapefile.

out.shapefile Output point shapefile (default extension: .shp).

method interpolation method to be used; choices: nearest neighbour interpolation (de-
fault), bilinear interpolation, inverse distance weighting, bicubic spline interpo-
lation, B-splines.



rsaga.close.gaps 31

... Optional arguments to be passed to rsaga.geoprocessor(), including the env
RSAGA geoprocessing environment.

Details

Retrieves information from the selected grids at the positions of the points of the selected points
layer and adds it to the resulting layer.

Note

This function uses module Add Grid Values to Points in SAGA GIS library shapes_grid.

Author(s)

Alexander Brenning (R interface), Olaf Conrad (SAGA modules)

See Also

pick.from.points(), pick.from.ascii.grid(), pick.from.saga.grid(), rsaga.grid.to.points()

rsaga.close.gaps SAGA Modules Close Gaps and Close One Cell Gaps

Description

Close (Interpolate) Gaps

Usage

rsaga.close.gaps(in.dem, out.dem, threshold = 0.1, ...)

rsaga.close.one.cell.gaps(in.dem, out.dem, ...)

Arguments

in.dem input: digital elevation model (DEM) as SAGA grid file (default file extension:
.sgrd)

out.dem output: DEM grid file without no-data values (gaps). Existing files will be over-
written!

threshold tension threshold for adjusting the interpolator (default: 0.1)

... optional arguments to be passed to rsaga.geoprocessor(), including the env
RSAGA geoprocessing environment

Details

rsaga.close.one.cell.gaps only fill gaps whose neighbor grid cells have non-missing data.

In rsaga.close.gaps, larger tension thresholds can be used to reduce overshoots and undershoots
in the surfaces used to fill (interpolate) the gaps.



32 rsaga.contour

Value

The type of object returned depends on the intern argument passed to the rsaga.geoprocessor().
For intern=FALSE it is a numerical error code (0: success), or otherwise (default) a character vector
with the module’s console output.

Note

This function uses modules 7 (rsaga.close.gaps and 6 rsaga.close.one.cell.gaps from the
SAGA library grid_tools.

SAGA GIS 2.0.5+ has a new additional module Close Gaps with Spline, which can be accessed
using rsaga.geoprocessor() (currently no R wrapper available). See rsaga.get.usage("grid_tools","Close
Gaps with Spline") or in version 2.1.0+ call rsaga.html.help("grid_tools","Close Gaps with
Spline").

Author(s)

Alexander Brenning (R interface), Olaf Conrad (SAGA module)

See Also

rsaga.geoprocessor(), rsaga.env()

Examples

## Not run:
# using SAGA grids:
rsaga.close.gaps("rawdem.sgrd","dem.sgrd")
# using ASCII grids:
rsaga.esri.wrapper(rsaga.close.gaps,in.dem="rawdem",out.dem="dem")

## End(Not run)

rsaga.contour Contour Lines from a Grid

Description

Creates a contour lines shapefile from a grid file in SAGA grid format.

Usage

rsaga.contour(
in.grid,
out.shapefile,
zstep,
zmin,
zmax,



rsaga.copy.sgrd 33

vertex = "xy",
env = rsaga.env(),
...

)

Arguments

in.grid input: digital elevation model (DEM) as SAGA grid file (default file extension:
.sgrd)

out.shapefile output: contour line shapefile. Existing files will be overwritten!
zstep, zmin, zmax

lower limit, upper limit, and equidistance of contour lines

vertex optional parameter: vertex type for resulting contours. Default "xy" (or 0). Only
available with SAGA GIS 2.1.3+.

• 0 "xy"

• 1 "xyz"

env A SAGA geoprocessing environment, see rsaga.env()

... arguments to be passed to rsaga.geoprocessor()

Value

The type of object returned depends on the intern argument passed to the rsaga.geoprocessor().
For intern=FALSE it is a numerical error code (0: success), or otherwise (the default) a character
vector with the module’s console output.

Author(s)

Alexander Brenning (R interface), Olaf Conrad (SAGA module)

See Also

rsaga.geoprocessor()

rsaga.copy.sgrd Create a copy of a SAGA grid file

Description

Creates a copy of a SAGA grid file, optionally overwriting the target file if it already exists. Intended
mainly for internal use by RSAGA functions, currently in particular rsaga.inverse.distance().

Usage

rsaga.copy.sgrd(in.grid, out.grid, overwrite = TRUE, env = rsaga.env())



34 rsaga.env

Arguments

in.grid name of a SAGA GIS grid file; file extension can be omitted

out.grid name of a SAGA GIS grid file; file extension can be omitted

overwrite logical; if TRUE (the default), overwrite out.grid if it already exists; if FALSE
and the out.grid already exists, copying will be skipped without causing an
error.

env a SAGA geoprocessing environment as created by rsaga.env()

Note

SAGA grid files consist of three (or more) individual files with file extensions .mgrd, .sgrd and
.sdat. The files with these three file extensions are copied, any additional files (e.g. a history file)
are ignored.

rsaga.env Function to set up RSAGA geoprocessing environment: Set up the
RSAGA Geoprocessing Environment

Description

rsaga.env creates a list with system-dependent information on SAGA path, module path and data
(working) directory. This kind of a list is required by most RSAGA geoprocessing functions and is
referred to as the ’RSAGA geoprocessing environment.’

Usage

rsaga.env(
path = NULL,
modules = NULL,
workspace = ".",
cmd = ifelse(Sys.info()["sysname"] == "Windows", "saga_cmd.exe", "saga_cmd"),
version = NULL,
cores,
parallel = FALSE,
root = NULL,
lib.prefix

)

Arguments

path path in which to find cmd; rsaga.env is usually able to find SAGA on your
system if it is installed; see Details.

modules path in which to find SAGA libraries; see Details

workspace path of the working directory for SAGA; defaults to the current directory (".").



rsaga.env 35

cmd name of the SAGA command line program; defaults to saga_cmd.exe, its name
under Windows

version optional character string: SAGA GIS (API) version, e.g. "2.0.8"; if missing,
a call to rsaga.get.version() is used to determine version number of SAGA
API

cores optional numeric argument, or NA: number of cores used by SAGA GIS; sup-
ported only by SAGA GIS 2.1.0 (and higher), ignored otherwise (with a warn-
ing). Multicore-enabled SAGA GIS modules such as the one used by rsaga.pisr()
seem to run in multicore mode by default when this argument is not specified,
therefore cores should only be specified to use a smaller number of cores than
available on a machine.

parallel optional logical argument (default: FALSE): if TRUE, run RSAGA functions that
are capable of parallel processing in parallel mode; note that this is completely
independent of the behaviour of SAGA GIS (which can be controlled using the
cores argument); currently only some RSAGA functions support parallel pro-
cessing (e.g., pick.from.ascii.grid() or rsaga.get.modules()). parallel=TRUE
requires that a parallel backend such as doSNOW or doMC is available and has
been started prior to calling any parallelized RSAGA function, otherwise warn-
ings may be generated

root optional root path to SAGA GIS installation. It is used if RSAGA performce
a search for the SAGA command line program (s. search). If left empty, on
Windoes C:/ is used, on Linux /usr and on Mac OS /usr/local/Cellar.

lib.prefix character string: a possible (platform-dependent) prefix for SAGA GIS library
names; if missing (recommended), a call to rsaga.lib.prefix() tries to de-
termine the correct prefix, e.g. "" on Windows systems and "lib" on non-
Windows systems with SAGA GIS pre-2.1.0. Try specifying "" or "lib" manu-
ally if this causes problems, and contact the package maintainer if the detection
mechanism fails on your system (indicate your Sys.info()["sysname"] and
your SAGA GIS version)

Details

IMPORTANT: Unlike R functions such as options(), which changes and saves settings some-
where in a global variable, rsaga.env() does not actually ’save’ any settings, it simply creates a
list that can (and has to) be passed to other rsaga.* functions. See example below.

We strongly recommend to install SAGA GIS on Windows in C:/Program Files/SAGA-GIS,
C:/Program Files (x86)/SAGA-GIS,C:/SAGA-GIS, C:/OSGeo4W64/apps/saga-lts or C:/OSGeo4W64/apps/saga.
If you use a standalone version of SAGA GIS in a different path, please refer to section 2 bellow.

There are three ways to create a RSAGA environment with rsaga.env:

1. No paths to the SAGA command line program and to the SAGA modules are specified by
the user through the arguments path and modules. On Windows rsaga.env tries to find the
SAGA command line program in the following folders C:/Progra~1/SAGA, C:/Progra~2/SAGA,
C:/Progra~1/SAGA-GIS, C:/Progra~2/SAGA-GIS, C:/SAGA-GIS, C:/OSGeo4W64/apps/saga-lts
and C:/OSGeo4W64/apps/saga. If this fails and attempt is being made to find the SAGA
command line program with a search on C:/ (The drive letter can be changed with the root
argument). The subfolder tools (SAGA Version < 3.0.0 subfolder modules) is checked for



36 rsaga.env

the SAGA module libraries. On Unix systems rsaga.env tries to find the SAGA command
line program in various default paths. Additionally, on Unix systems the PATH environment
variable is checked for the path to the SAGA command line program and the SAGA_MLB
environment variable is checked for the SAGA module libraries. If this fails, a search for the
SAGA command line program and the module libraries is performed on /usr. If no SAGA
command line program can be found, please specify the paths as described in section 2.

2. The user specifies both the path to the SAGA command line program and to the SAGA module
libraries. Both paths are checked if they are valid. Use this if SAGA GIS is located in a non-
standard path or if you use more than one SAGA GIS version.

3. The user specifies only the path to the SAGA command line program. A search for the SAGA
modules is performed as described in section 1.

Value

A list with components workspace, cmd, path, modules, version, cores and parallel with val-
ues as passed to rsaga.env or default values as described in the Details section.

Note

Note that the default workspace is ".", not getwd(); i.e. the default SAGA workspace folder is
not fixed, it changes each time you change the R working directory using setwd.

Author(s)

Alexander Brenning and Marc Becker

See Also

rsaga.get.version()

Examples

## Not run:
# Check the default RSAGA environment on your computer:
myenv <- rsaga.env()
myenv
# SAGA data in C:/sagadata, binaries in C:/SAGA-GIS, modules in C:/SAGA-GIS/modules:
myenv <- rsaga.env(workspace="C:/sagadata", path="C:/SAGA-GIS")
# Unix: SAGA in /usr/bin (instead of the default /usr/local/bin),
# and modules in /use/lib/saga:
# myenv <- rsaga.env(path="/usr/bin")
# Use the 'myenv' environment for SAGA geoprocessing:
rsaga.hillshade("dem","hillshade",env=myenv)
# ...creates (or overwrites) grid "C:/sagadata/hillshade.sgrd"
# derived from digital elevation model "C:/sagadata/dem.sgrd"

# Same calculation with different SAGA version:
# (I keep several versions in SAGA-GIS_x.x.x folders:)
myenv05 = rsaga.env(path = "C:/Progra~1/SAGA-GIS_2.0.5")
rsaga.hillshade("dem","hillshade205",env=myenv05)



rsaga.esri.to.sgrd 37

## End(Not run)

rsaga.esri.to.sgrd Convert ESRI ASCII/binary grids to SAGA grids

Description

rsaga.esri.to.sgrd converts grid files from ESRI’s ASCII (.asc) and binary (.flt) format to
SAGA’s (version 2) grid format (.sgrd).

Usage

rsaga.esri.to.sgrd(
in.grids,
out.sgrds = set.file.extension(in.grids, ".sgrd"),
in.path,
...

)

Arguments

in.grids character vector of ESRI ASCII/binary grid files (default file extension: .asc);
files should be located in folder in.path

out.sgrds character vector of output SAGA grid files; defaults to in.grids with file ex-
tension being replaced by .sgrd, which is also the default extension if file
names without extension are specified; files will be placed in the current SAGA
workspace (default: rsaga.env()$workspace, or env$workspace if an env ar-
gument is provided

in.path folder with in.grids

... optional arguments to be passed to rsaga.geoprocessor(), including the env
RSAGA geoprocessing environment

Value

The type of object returned depends on the intern argument passed to the rsaga.geoprocessor().
For intern=FALSE it is a numerical error code (0: success), or otherwise (default) a character vector
with the module’s console output.

If multiple in.grids are converted, the result will be a vector of numerical error codes of the same
length, or the combination of the console outputs with c().

Note

This function uses module 1 from the SAGA library io_grid.

Author(s)

Alexander Brenning (R interface), Olaf Conrad (SAGA module)



38 rsaga.esri.wrapper

See Also

rsaga.esri.wrapper() for an efficient way of applying RSAGA to ESRI ASCII/binary grids;
rsaga.env()

rsaga.esri.wrapper Use RSAGA functions for ESRI grids

Description

This wrapper converts input grid files provided in ESRI binary (.flt) or ASCII (.asc) formats to
SAGA’s (version 2) grid format, calls the RSAGA geoprocessing function, and converts the output
grids back to the ESRI grid format. Conversion can also be limited to either input or output grids.

Usage

rsaga.esri.wrapper(
fun,
in.esri = TRUE,
out.esri = TRUE,
env = rsaga.env(),
esri.workspace = env$workspace,
format = "ascii",
georef = "corner",
prec = 5,
esri.extension,
condensed.res = TRUE,
clean.up = TRUE,
intern = TRUE,
...

)

Arguments

fun function: one of the RSAGA geoprocessing functions, such as rsaga.close.gaps()
or rsaga.hillshade() etc.

in.esri logical: are input grids provided as ESRI grids (in.esri=TRUE) or as SAGA
grids?

out.esri logical: should output grids be converted to ESRI grids?

env RSAGA environment as returned by rsaga.env()

esri.workspace directory for the input and output ESRI ASCII/binary grids

format output file format, either "ascii" (default; equivalent: format=1) for ASCII
grids or "binary" (equivalent: 0) for binary ESRI grids (.flt).

georef character: "corner" (equivalent numeric code: 0) or "center" (default; equiv-
alent: 1). Determines whether the georeference will be related to the center or
corner of its extreme lower left grid cell.



rsaga.esri.wrapper 39

prec number of digits when writing floating point values to ASCII grid files (only
relevant if out.esri=TRUE).

esri.extension extension for input/output ESRI grids: defaults to .asc for format="ascii",
and to .flt for format="binary"

condensed.res logical: return only results of the RSAGA geoprocessing function fun (condensed.res=TRUE),
or include the results of the import and export operations, i.e. the calls to
rsaga.esri.to.sgrd() and rsaga.sgrd.to.esri()? (see Value)

clean.up logical: delete intermediate SAGA grid files?

intern intern argument to be passed to rsaga.geoprocessor(); see Value

... additional arguments for fun; NOTE: ESRI ASCII/float raster file names should
NOT include the file extension (.asc, .flt); the file extension is defined by the
esri.extension and format arguments!

Details

ESRI ASCII/float raster file names should NOT include the file extension (.asc, .flt); the file exten-
sion is defined by the esri.extension and format arguments!

Value

The object returned depends on the condensed.res arguments and the intern argument passed to
the rsaga.geoprocessor().

If condensed.res=TRUE and intern=FALSE, a single numerical error code (0: success) is returned.
If condensed.res=TRUE and intern=TRUE (default), a character vector with the module’s console
output is returned (invisibly).

If condensed.res=FALSE the result is a list with components in.res, geoproc.res and out.res.
Each of these components is either an error code (for intern=FALSE) or (for intern=TRUE) a
character vector with the console output of the input (rsaga.esri.to.sgrd()), the geoprocessing
(fun), and the output conversion (rsaga.sgrd.to.esri()) step, respectively. For in.esri=FALSE
or out.esri=FALSE, the corresponding component is NULL.

Note

Note that the intermediate grids as well as the output grids may overwrite existing files with the
same file names without prompting the user. See example below.

See Also

rsaga.esri.to.sgrd(), rsaga.sgrd.to.esri(), rsaga.geoprocessor(), rsaga.env()

Examples

## Not run:
rsaga.esri.wrapper(rsaga.hillshade,in.dem="dem",out.grid="hshd",condensed.res=FALSE,intern=FALSE)
# if successful, returns list(in.res=0,geoproc.res=0,out.res=0),
# and writes hshd.asc; intermediate files dem.sgrd, dem.hgrd, dem.sdat,
# hshd.sgrd, hshd.hgrd, and hshd.sdat are deleted.
# hshd.asc is overwritten if it already existed.



40 rsaga.fill.sinks

## End(Not run)

rsaga.fill.sinks Fill Sinks

Description

Several methods for filling closed depressions in digital elevation models that would affect hydro-
logical modeling.

Usage

rsaga.fill.sinks(
in.dem,
out.dem,
method = "planchon.darboux.2001",
out.flowdir,
out.wshed,
minslope,
...

)

Arguments

in.dem Input: digital elevation model (DEM) as SAGA grid file (default extension:
.sgrd).

out.dem Output: filled, depression-free DEM (SAGA grid file). Existing files will be
overwritten!

method The depression filling algorithm to be used (character). One of "planchon.darboux.2001"
(default), "wang.liu.2006", or "xxl.wang.liu.2006".

out.flowdir (only for "wang.liu.2001"): Optional output grid file for computed flow direc-
tions (see Notes).

out.wshed (only for "wang.liu.2001"): Optional output grid file for watershed basins.

minslope Minimum slope angle (in degree) preserved between adjacent grid cells (default
value of 0.01 only for method="planchon.darboux.2001", otherwise no de-
fault).

... Optional arguments to be passed to rsaga.geoprocessor(), including the env
RSAGA geoprocessing environment.



rsaga.fill.sinks 41

Details

This function bundles three SAGA modules for filling sinks using three different algorithms (method
argument).

"planchon.darboux.2001": The algorithm of Planchon and Darboux (2001) consists of increasing
the elevation of pixels in closed depressions until the sink disappears and a minimum slope angle
of minslope (default: 0.01 degree) is established.

"wang.liu.2006": This module uses an algorithm proposed by Wang and Liu (2006) to iden-
tify and fill surface depressions in DEMs. The method was enhanced to allow the creation of
hydrologically sound elevation models, i.e. not only to fill the depressions but also to preserve a
downward slope along the flow path. If desired, this is accomplished by preserving a minimum
slope gradient (and thus elevation difference) between cells. This is the fully featured version of
the module creating a depression-free DEM, a flow path grid and a grid with watershed basins. If
you encounter problems processing large data sets (e.g. LIDAR data) with this module try the basic
version (xxl.wang.lui.2006).

"xxl.wang.liu.2006": This modified algorithm after Wang and Liu (2006) is designed to work
on large data sets.

Value

The type of object returned depends on the intern argument passed to the rsaga.geoprocessor().
For intern=FALSE it is a numerical error code (0: success), or otherwise (default) a character vector
with the module’s console output.

The function writes SAGA grid files containing of the depression-free preprocessed DEM, and
optionally the flow directions and watershed basins.

Note

The flow directions are coded as 0 = north, 1 = northeast, 2 = east, ..., 7 = northwest.

If minslope=0, depressions will only be filled until a horizontal surface is established, which may
not be helpful for hydrological modeling.

Author(s)

Alexander Brenning (R interface), Volker Wichmann (SAGA module)

References

Planchon, O., and F. Darboux (2001): A fast, simple and versatile algorithm to fill the depressions
of digital elevation models. Catena 46: 159-176.

Wang, L. & H. Liu (2006): An efficient method for identifying and filling surface depressions in
digital elevation models for hydrologic analysis and modelling. International Journal of Geograph-
ical Information Science, Vol. 20, No. 2: 193-213.

See Also

rsaga.sink.removal(), rsaga.sink.route().



42 rsaga.filter.gauss

rsaga.filter.gauss Gauss Filter

Description

Smooth a grid using a Gauss filter.

Usage

rsaga.filter.gauss(
in.grid,
out.grid,
sigma,
radius = ceiling(2 * sigma),
env = rsaga.env(),
...

)

Arguments

in.grid input: SAGA GIS grid file (default file extension: .sgrd)

out.grid output: SAGA GIS grid file

sigma numeric, >0.0001: standard deviation parameter of Gauss filter

radius positive integer: radius of moving window

env list, setting up a SAGA geoprocessing environment as created by rsaga.env()

... optional arguments to be passed to rsaga.geoprocessor(), including the env
RSAGA geoprocessing environment

Value

The type of object returned depends on the intern argument passed to the rsaga.geoprocessor().
For intern=FALSE it is a numerical error code (0: success), or otherwise (the default) a character
vector with the module’s console output.

Author(s)

Alexander Brenning (R interface), Olaf Conrad (SAGA module)

See Also

rsaga.filter.simple()



rsaga.filter.simple 43

rsaga.filter.simple Simple Filters

Description

Apply a smoothing, sharpening or edge filter to a SAGA grid.

Usage

rsaga.filter.simple(
in.grid,
out.grid,
mode = "circle",
method = c("smooth", "sharpen", "edge"),
radius,
env = rsaga.env(),
...

)

Arguments

in.grid input: SAGA grid file (default file extension: .sgrd)

out.grid output: SAGA grid file

mode character or numeric: shape of moving window, either "square" (=0) or "circle"
(=1, default)

method character or numeric: "smooth" (=0), "sharpen" (=1), or "edge" (=2)

radius positive integer: radius of moving window

env list, setting up a SAGA geoprocessing environment as created by rsaga.env()

... optional arguments to be passed to rsaga.geoprocessor(), including the env
RSAGA geoprocessing environment

Value

The type of object returned depends on the intern argument passed to the rsaga.geoprocessor().
For intern=FALSE it is a numerical error code (0: success), or otherwise (the default) a character
vector with the module’s console output.

Author(s)

Alexander Brenning (R interface), Olaf Conrad (SAGA module)

See Also

rsaga.filter.gauss()



44 rsaga.geoprocessor

Examples

## Not run: rsaga.filter.simple("dem","dem-smooth",radius=4)

rsaga.geoprocessor Generic R interface for SAGA modules

Description

This function is the workhorse of the R–SAGA interface: It calls the SAGA command line tool to
run SAGA modules and pass arguments.

Usage

rsaga.geoprocessor(
lib,
module = NULL,
param = list(),
show.output.on.console = TRUE,
invisible = TRUE,
intern = TRUE,
prefix = NULL,
flags = ifelse(show.output.on.console, "q", "s"),
cores,
env = rsaga.env(),
display.command = FALSE,
reduce.intern = TRUE,
check.module.exists = TRUE,
warn = options("warn")$warn,
argsep = " ",
check.parameters = TRUE,
...

)

Arguments

lib Name of the SAGA library to be called (see Details).

module Number (>=0) or name of the module to called within the library lib (see De-
tails).

param A list of named arguments to be passed to the SAGA module (see Examples).
show.output.on.console

a logical (default: TRUE), indicates whether to capture the output of the command
and show it on the R console (see system()).

invisible a logical, indicates whether the command window should be visible on the
screen.

intern a logical, indicates whether to make the output of the command an R object



rsaga.geoprocessor 45

prefix optional character string: prefix such as "-h" used in the saga_cmd call; mostly
for internal purposes; call saga_cmd -h from the command line for details; see
also flags

flags optional character string indicating any command line flags; supported only by
SAGA GIS 2.1.0 (and higher), quietly ignored otherwise: "q": no progress
report (the default for show.output.on.console=TRUE); "r": no messages re-
port; "s": silent mode, i.e. no progress and no messages report (the default
for show.output.on.console=FALSE); other flag options probably not relevant
within RSAGA

cores optional numeric argument, or NA: number of cores used by SAGA GIS; sup-
ported only by SAGA GIS 2.1.0 (and higher), ignored otherwise (with a warn-
ing); overwrites the cores setting specified in the env argument (see rsaga.env()).
Multicore-enabled SAGA GIS modules such as the one used by rsaga.pisr()
seem to run in multicore mode by default when this argument is not specified,
therefore cores should only be specified to use a smaller number of cores than
available on a machine.

env A SAGA geoprocessing environment, i.e. a list with information on the SAGA
and SAGA modules paths and the name of the working directory in which to
look for input and output files. (Defaults: see rsaga.env().)

display.command

Display the DOS command line for executing the SAGA module (including all
the arguments to be passed). Default: FALSE.

reduce.intern If intern=TRUE, reduce the text output of SAGA returned to R by eliminating
redundant lines showing the progress of module execution etc. (default: TRUE).

check.module.exists

logical (default: TRUE): call rsaga.module.exists() to determine if the spec-
ified module can be called in the current SAGA installation

warn logical (default: TRUE): for internal purposes - can be used to suppress warning
messages generated by failed SAGA_CMD calls; currently used by rsaga.get.lib.modules()
and related functions; see options() argument warn for details

argsep character (default: " "; currently for internal use): defines the character symbol
used as a separator between each argument name and argument value passed to
saga_cmd. SAGA GIS 2.1.0 (RC1) seems to move toward "=" as a separator,
but " " still works and some modules (e.g. the used by rsaga.pisr) don’t
seem to work with argsep="=". Future releases of RSAGA may change the
default argsep value and/or delete or ignore this argument and/or move it to
rsaga.env().

check.parameters

logical(default: TRUE): Check if correct parameters are used.

... Additional arguments to be passed to base::system().

Details

This workhorse function establishes the interface between the SAGA command line program and
R by submitting a system call. This is a low-level function that may be used for directly accessing



46 rsaga.geoprocessor

SAGA; specific functions such as rsaga.hillshade are intended to be more user-friendly inter-
faces to the most frequently used SAGA modules. These higher-level interfaces support default
values for the arguments and perform some error checking; they should therefore be preferred if
available.

A warning is issued if the RSAGA version is not one of 2.0.4-2.0.8 or 2.1.0-2.1.4

Value

The type of object returned depends on the intern argument passed to system().

If intern=FALSE, a numerical error/success code is returned, where a value of 0 corresponds to
success and a non-zero value indicates an error. Note however that the function always returns a
success value of 0 if wait=FALSE, i.e. if it does not wait for SAGA to finish.

If intern=TRUE (default), the console output of SAGA is returned as a character vector. This
character vector lists the input file names and modules arguments, and gives a more or less de-
tailed report of the function’s progress. Redundant information can be cancelled out by setting
reduce.intern=TRUE.

Note

Existing output files will be overwritten by SAGA without prompting!

If a terrain analysis function is not directly interfaced by one of the RSAGA functions, you might
still find it in the growing set of SAGA libraries and modules. The names of all libraries available
in your SAGA installation can be obtained using rsaga.get.libraries() (or by checking the di-
rectory listing of the modules folder in the SAGA directory). The names and numeric codes of all
available modules (globally or within a specific library) are retrieved by rsaga.get.modules().
Full-text search in library and module names is performed by rsaga.search.modules(). For in-
formation on the usage of SAGA command line modules, see rsaga.get.usage(), or the RSAGA
interface function if available.

display.command=TRUE is mainly intended for debugging purposes to check if all arguments are
passed correctly to SAGA CMD.

Author(s)

Alexander Brenning (R interface); Olaf Conrad and the SAGA development team (SAGA develop-
ment)

References

Brenning, A., 2008. Statistical geocomputing combining R and SAGA: The example of landslide
susceptibility analysis with generalized additive models. In J. Boehner, T. Blaschke and L. Mon-
tanarella (eds.), SAGA - Seconds Out (= Hamburger Beitraege zur Physischen Geographie und
Landschaftsoekologie, vol. 19), p. 23-32.

See Also

rsaga.env(), rsaga.get.libraries(), rsaga.get.modules(), rsaga.search.modules(), rsaga.get.usage();
rsaga.esri.wrapper() for a wrapper for ESRI ASCII/binary grids; rsaga.hillshade() and
other higher-level functions.



rsaga.get.modules 47

Examples

## Not run:
rsaga.hillshade("dem","hillshade",exaggeration=2)
# using the RSAGA geoprocessor:
rsaga.geoprocessor("ta_lighting",0,list(ELEVATION="dem.sgrd",SHADE="hillshade",EXAGGERATION=2))
# equivalent DOS command line call:
# saga_cmd.exe ta_lighting 0 -ELEVATION dem.sgrd -SHADE hillshade -EXAGGERATION 2

## End(Not run)

rsaga.get.modules Find SAGA libraries and modules

Description

These functions list the SAGA libraries (rsaga.get.libraries) and modules (rsaga.get.lib.modules,
rsaga.get.modules) available in a SAGA installation, and allow to perform a full-text search
among these functions.

Usage

rsaga.get.modules(
libs,
env = rsaga.env(),
interactive = FALSE,
parallel = env$parallel

)

rsaga.get.libraries(path = rsaga.env()$modules, dll)

rsaga.get.lib.modules(lib, env = rsaga.env(), interactive = FALSE)

rsaga.module.exists(libs, module, env = rsaga.env(), ...)

rsaga.search.modules(
text,
modules,
search.libs = TRUE,
search.modules = TRUE,
env = rsaga.env(),
ignore.case = TRUE,
...

)

Arguments

libs character vector with the names of libraries in which to look for modules; if
missing, all libraries will be processed



48 rsaga.get.modules

env a SAGA geoprocessing environment as created by rsaga.env()

interactive logical (default FALSE): should modules be returned that can only be executed
in interactive mode (i.e. using SAGA GUI)?

parallel logical (defaults to env$parallel): if TRUE, run in parallel mode; requires a
parallel backend such as doSNOW or doMC

path path of SAGA library files (modules subfolder in the SAGA installation folder);
defaults to the path determined by rsaga.env().

dll file extension of dynamic link libraries

lib character string with the name of the library in which to look for modules

module module name or numeric code

... currently only interactive to be passed on to rsaga.get.lib.modules

text character string to be searched for in the names of available libraries and/or
modules

modules optional list: result of rsaga.get.modules; if missing, a list of available mod-
ules will be retrieved using that function

search.libs logical (default TRUE); see search.modules

search.modules logical (default TRUE): should text be searched for in library and/or module
names?

ignore.case logical (default FALSE): should the text search in library/module names be case
sensitive?

Value

rsaga.get.libraries returns a character vector with the names of all SAGA libraries available in
the folder env$modules.

rsaga.get.lib.modules returns a data.frame with:

• name the names of all modules in library lib,

• code their numeric identifiers,

• interactive and a logical variable indicating whether a module can only be executed in inter-
active (SAGA GUI) mode.

rsaga.get.modules returns a list with, for each SAGA library in libs, a data.frame with module
information as given by rsaga.get.lib.modules. If libs is missing, all modules in all libraries
will be retrieved.

Note

For information on the usage of SAGA command line modules, see rsaga.get.usage(), or rsaga.html.help()
(in SAGA GIS 2.1.0+), or the RSAGA interface function, if available.

See Also

rsaga.get.usage(), rsaga.html.help(), rsaga.geoprocessor(), rsaga.env()



rsaga.get.modules.path 49

Examples

## Not run:
# make sure that 'rsaga.env' can find 'saga_cmd.exe'
# before running this:
rsaga.get.libraries()
# list all modules in my favorite libraries:
rsaga.get.modules(c("io_grid", "grid_tools", "ta_preprocessor",

"ta_morphometry", "ta_lighting", "ta_hydrology"))
# list *all* modules (quite a few!):
# rsaga.get.modules(interactive=TRUE)

# find modules that remove sink from DEMs:
rsaga.search.modules("sink")
# find modules that close gaps (no-data areas) in grids:
rsaga.search.modules("gap")

## End(Not run)

rsaga.get.modules.path

Internal functions that determine OS-specific path in which modules
might be located.

Description

Internal functions that determine OS-specific path in which modules might be located.

Usage

rsaga.get.modules.path(sysname = Sys.info()["sysname"], saga.path, root, cmd)

Arguments

sysname character: name of the operating system, determined by default by base::Sys.info():
e.g., "Windows", "Linux", "Darwin" (for Mac OSX), or "FreeBSD"

saga.path character: path with SAGA GIS binaries, as determined (e.g.) by rsaga.default.path

root root path to SAGA GIS installation

cmd name of the SAGA command line program



50 rsaga.get.usage

rsaga.get.usage Usage of SAGA command line modules

Description

rsaga.get.usage provides information on the usage of and arguments required by SAGA com-
mand line modules.

Usage

rsaga.get.usage(lib, module, env = rsaga.env(), show = TRUE)

Arguments

lib name of the SAGA library

module name or numeric identifier of SAGA module in library lib

env a SAGA geoprocessing environment as created by rsaga.env()

show logical (default: TRUE); display usage in the R console?

Details

This function is intended to provide information required to use the rsaga.geoprocessor() and
for writing your own high-level interface function for SAGA modules. R–SAGA interfaces already
exist for some SAGA modules, e.g. rsaga.hillshade(), rsaga.local.morphometry(), but there
are many more.

Value

The character vector with usage information is invisibly returned.

See Also

rsaga.html.help(), rsaga.geoprocessor(), rsaga.env(), rsaga.get.modules()

Examples

## Not run:
rsaga.get.usage("io_grid",1)
rsaga.get.usage("ta_preprocessor",2)
rsaga.get.usage("ta_morphometry",0)
# in SAGA GIS 2.1.0+, compare:
rsaga.html.help("io_grid",1)
# etc.

## End(Not run)



rsaga.get.version 51

rsaga.get.version Determine SAGA GIS version

Description

Determine SAGA GIS version.

Usage

rsaga.get.version(env = rsaga.env(version = NA), ...)

Arguments

env list, setting up a SAGA geoprocessing environment as created by rsaga.env().
Note that version=NA ensures that rsaga.env() won’t call rsaga.get.version
itself.

... additional arguments to rsaga.geoprocessor()

Details

The function first attempts to determine the SAGA version directly through a system call saga_cmd
--version, which is supported by SAGA GIS 2.0.8+. If this fails, saga_cmd -h is called, and it is
attempted to extract the version number of the SAGA API from the output generated, which works
for 2.0.4 - 2.0.7.

Value

A character string defining the SAGA GIS (API) version. E.g., "2.0.8".

See Also

rsaga.env()

Examples

## Not run:
myenv <- rsaga.env()
myenv$version
# rsaga.env actually calls rsaga.get.version:
rsaga.get.version()

# I keep several versions of SAGA GIS in SAGA-GIS_2.0.x folders:
myenv05 = rsaga.env(path = "C:/Progra~1/SAGA-GIS_2.0.5", version = NA)
# Check if it's really version 2.0.5 as suggested by the folder name:
rsaga.get.version(env = myenv05)

## End(Not run)



52 rsaga.grid.calculus

rsaga.grid.calculus SAGA Module Grid Calculus

Description

Perform Arithmetic Operations on Grids

Usage

rsaga.grid.calculus(in.grids, out.grid, formula, env = rsaga.env(), ...)

rsaga.linear.combination(
in.grids,
out.grid,
coef,
cf.digits = 16,
remove.zeros = FALSE,
remove.ones = TRUE,
env = rsaga.env(),
...

)

Arguments

in.grids input character vector: SAGA grid files (default file extension: .sgrd)

out.grid output: grid file resulting from the cell-by-cell application of ’formula’ to the
grids. Existing files will be overwritten!

formula character string of formula specifying the arithmetic operation to be performed
on the in.grids (see Details); if this is a formula, only the right hand side will
be used.

env RSAGA geoprocessing environment, generated by a call to rsaga.env()

... optional arguments to be passed to rsaga.geoprocessor()

coef numeric: coefficient vector to be used for the linear combination of the in.grids.
If coef as one more element than in.grids, the first one will be interpreted as
an intercept.

cf.digits integer: number of digits used when converting the coefficients to character
strings (trailing zeros will be removed)

remove.zeros logical: if TRUE, terms (grids) with coefficient (numerically) equal to zero (after
rounding to cf.digits digits) will be removed from the formula

remove.ones logical: if TRUE (the default), factors equal to 1 (after rounding to cf.digits
digits) will be removed from the formula



rsaga.grid.calculus 53

Details

The in.grids are represented in the formula by the letters a (for in.grids[1]), b etc. Thus, if
in.grids[1] is Landsat TM channel 3 and in.grids[2] is channel 4, the NDVI formula (TM3-
TM4)/(TM3+TM4) can be represented by the character string "(a-b)/(a+b)" (any spaces are re-
moved) or the formula ~(a-b)/(a+b) in the formula argument.

In addition to +, -, *, and /, the following operators and functions are available for the formula
definition: + ˆ power + sin(a) sine + cos(a) cosine + tan(a) tangent + asin(a) arc sine +
acos(a) arc cosine + atan(a) arc tangent + atan2(a,b) arc tangent of b/a + abs(a) absolute
value + int(a) convert to integer + sqr(a) square + sqrt(a) square root + ln(a) natural logarithm
+ log(a) base 10 logarithm + mod(a,b) modulo + gt(a, b) returns 1 if a greater b + lt(a, b)
returns 1 if a lower b + eq(a, b) returns 1 if a equal b + ifelse(switch, x, y) returns x if switch
equals 1 else y

Using remove.zeros=FALSE might have the side effect that no data areas in the grid with coefficient
0 are passed on to the results grid. (To be confirmed.)

Value

The type of object returned depends on the intern argument passed to the rsaga.geoprocessor().
For intern=FALSE it is a numerical error code (0: success), or otherwise (the default) a character
vector with the module’s console output.

Author(s)

Alexander Brenning (R interface), Olaf Conrad (SAGA module)

See Also

local.function(), focal.function(), and multi.focal.function() for a more flexible frame-
work for combining grids or applying local and focal functions; rsaga.geoprocessor(), rsaga.env()

Examples

## Not run:
# using SAGA grids:
# calculate the NDVI from Landsat TM bands 3 and 4:
rsaga.grid.calculus(c("tm3.sgrd","tm4.sgrd"), "ndvi.sgrd", ~(a-b)/(a+b))
# apply a linear regression equation to grids:
coefs = c(20,-0.6)
# maybe from a linear regression of mean annual air temperature (MAAT)
# against elevation - something like:
# coefs = coef( lm( maat ~ elevation ) )
rsaga.linear.combination("elevation.sgrd", "maat.sgrd", coefs)
# equivalent:
rsaga.grid.calculus("elevation.sgrd", "maat.sgrd", "20 - 0.6*a")

## End(Not run)



54 rsaga.grid.to.points

rsaga.grid.to.points Convert SAGA grid file to point shapefile

Description

Convert SAGA grid file to point (or polygon) shapefile - either completely or only a random sample
of grid cells.

Usage

rsaga.grid.to.points(
in.grids,
out.shapefile,
in.clip.polygons,
exclude.nodata = TRUE,
type = "nodes",
env = rsaga.env(),
...

)

rsaga.grid.to.points.randomly(in.grid, out.shapefile, freq, ...)

Arguments

in.grids Input: names of (possibly several) SAGA GIS grid files to be converted into a
point shapefile.

out.shapefile Output: point shapefile (default extension: .shp). Existing files will be over-
written!

in.clip.polygons

optional polygon shapefile to be used for clipping/masking an area
exclude.nodata logical (default: TRUE): skip ’nodata’ grid cells?
type character string: "nodes": create point shapefile of grid center points; "cells"

(only supported by SAGA GIS 2.0.6+): create polygon shapefile with grid cell
boundaries

env RSAGA geoprocessing environment created by rsaga.env(); required by rsaga.grid.to.points
to determine version-dependent SAGA module name and arguments

... Optional arguments to be passed to rsaga.geoprocessor()

in.grid Input: SAGA grid file from which to sample.
freq integer >=1: sampling frequency: on average 1 out of ’freq’ grid cells are se-

lected

Note

These functions use modules Grid Values to Points (in some versions also called Grid Values to Shapes)
and Grid Values to Points (randomly) in SAGA library shapes_grid.
The SAGA 2.0.6+ version of this module is more flexible as it allows to create grid cell polygons
instead of center points (see argument type).



rsaga.hillshade 55

Author(s)

Alexander Brenning (R interface), Olaf Conrad (SAGA modules)

See Also

rsaga.add.grid.values.to.points()

Examples

## Not run:
# one point per grid cell, exclude nodata areas:
rsaga.grid.to.points("dem", "dempoints")
# take only every 20th point, but to not exclude nodata areas:
rsaga.grid.to.points.randomly("dem", "dempoints20", freq = 20)

## End(Not run)

rsaga.hillshade Analytical hillshading Analytical hillshading calculation.

Description

Analytical hillshading Analytical hillshading calculation.

Usage

rsaga.hillshade(
in.dem,
out.grid,
method = "standard",
azimuth = 315,
declination = 45,
exaggeration = 4,
...

)

Arguments

in.dem Input digital elevation model (DEM) as SAGA grid file (default extension: .sgrd).

out.grid Output hillshading grid (SAGA grid file). Existing files will be overwritten!

method Available choices (character or numeric): "standard" (or 0 - default), "max90deg.standard"
(1), "combined.shading" (2), "ray.tracing" (3). See Details.

azimuth Direction of the light source, measured in degree clockwise from the north di-
rection; default 315, i.e. northwest.

declination Declination of the light source, measured in degree above the horizon (default
45).



56 rsaga.html.help

exaggeration Vertical exaggeration of elevation (default: 4). The terrain exaggeration factor
allows to increase the shading contrasts in flat areas.

... Optional arguments to be passed to rsaga.geoprocessor(), including the env
RSAGA geoprocessing environment.

Details

The Analytical Hillshading algorithm is based on the angle between the surface and the incoming
light beams, measured in radians.

Value

The type of object returned depends on the intern argument passed to the rsaga.geoprocessor().
For intern=FALSE it is a numerical error code (0: success), or otherwise (default) a character vector
with the module’s console output.

Note

While the default azimuth of 315 degree (northwest) is not physically meaningful on the northern
hemisphere, a northwesterly light source is required to properly depict relief in hillshading images.
Physically correct southerly light sources results a hillshade that would be considered by most
people as inverted: hills look like depressions, mountain chains like troughs.

Author(s)

Alexander Brenning (R interface), Olaf Conrad (SAGA module)

See Also

rsaga.solar.radiation(), rsaga.insolation()

Examples

## Not run: rsaga.hillshade("dem.sgrd","hillshade")

rsaga.html.help HTML help on a SAGA module or library

Description

This function opens SAGA’s HTML documentation for the specified library or module. Works with
SAGA GIS 2.1.0(+), for earlier versions a web page with the SAGA GIS wiki is displayed.



rsaga.html.help 57

Usage

rsaga.html.help(
lib,
module = NULL,
use.program.folder = TRUE,
env = rsaga.env(),
...

)

Arguments

lib name of the SAGA library, or one of the rsaga. module functions such as
rsaga.hillshade()

module name or numeric identifier of SAGA module in library lib; module=NULL takes
you to the main help page of the SAGA library lib

use.program.folder

logical; if TRUE (the default), attempt to write SAGA GIS documentation to a
"help" subfolder of env$path; the "help" folder is created if it doesn’t exist.
If FALSE, create SAGA GIS documentation files in this R session’s temporary
folder as obtained using tempdir()

env a SAGA geoprocessing environment as created by rsaga.env()

... additional arguments to browseURL()

Details

Requires SAGA GIS 2.1.0(+), with earlier versions use rsaga.get.usage().

See Also

rsaga.get.usage(), rsaga.geoprocessor(), rsaga.env()

Examples

## Not run:
# Requires SAGA GIS 2.1.0+:
rsaga.html.help("io_grid")
rsaga.html.help("io_grid",0)
rsaga.html.help("io_grid","Import ESRI Arc/Info Grid")

## End(Not run)



58 rsaga.import.gdal

rsaga.import.gdal Import Grid Files to SAGA grid format using GDAL

Description

These functions provide simple interfaces for reading and writing grids from/to ASCII grids and Rd
files. Grids are stored in matrices, their headers in lists.

Usage

rsaga.import.gdal(in.grid, out.grid, env = rsaga.env(), ...)

Arguments

in.grid file name of a grid in a format supported by GDAL
out.grid output SAGA grid file name; defaults to in.grid with the file extension being

removed; file extension should not be specified, it defaults to .sgrd

env RSAGA geoprocessing environment created by rsaga.env()

... additional arguments to be passed to rsaga.geoprocessor

Details

The GDAL Raster Import module of SAGA imports grid data from various file formats using the
Geospatial Data Abstraction Library (GDAL) by Frank Warmerdam. GDAL Versions are specific
to SAGA versions:

• SAGA 2.1.2 - 2.2.0: GDAL v.1.11.0
• SAGA 2.2.1 - 2.2.3: GDAL v.2.1.0 dev
• ...
• SAGA 8.4.1: GDAL v3.3.0 More information is available at https://gdal.org/.

If in.grid has more than one band (e.g. RGB GEOTIFF), then output grids with file names of the
form in.grid_01.sgrd, in.grid_02.sgrd etc. are written, one for each band.

Numerous raster formats are currently supported. For SAGA 8.4.1 see e.g. https://saga-gis.
sourceforge.io/saga_tool_doc/8.4.1/io_gdal_0.html

Author(s)

Alexander Brenning (R interface), Olaf Conrad / Andre Ringeler (SAGA module), Frank Warmer-
dam (GDAL)

References

GDAL website: https://gdal.org/

See Also

read.ascii.grid, rsaga.esri.to.sgrd, read.sgrd, read.Rd.grid

https://gdal.org/
https://saga-gis.sourceforge.io/saga_tool_doc/8.4.1/io_gdal_0.html
https://saga-gis.sourceforge.io/saga_tool_doc/8.4.1/io_gdal_0.html
https://gdal.org/


rsaga.insolation 59

rsaga.insolation Incoming Solar Radiation (Insolation)

Description

This function calculates the amount of incoming solar radiation (insolation) depending on slope,
aspect, and atmospheric properties. Module not available in SAGA GIS 2.0.6 and 2.0.7.

Usage

rsaga.insolation(
in.dem,
in.vapour,
in.latitude,
in.longitude,
out.direct,
out.diffuse,
out.total,
horizontal = FALSE,
solconst = 8.164,
atmosphere = 12000,
water.vapour.pressure = 10,
type = c("moment", "day", "range.of.days", "same.moment.range.of.days"),
time.step = 1,
day.step = 5,
days,
moment,
latitude,
bending = FALSE,
radius = 6366737.96,
lat.offset = "user",
lat.ref.user = 0,
lon.offset = "center",
lon.ref.user = 0,
env = rsaga.env(),
...

)

Arguments

in.dem Name of input digital elevation model (DEM) grid in SAGA grid format (default
extension: .sgrd)

in.vapour Optional input: SAGA grid file giving the water vapour pressure in mbar

in.latitude Optional input: SAGA grid file giving for each pixel the latitude in degree

in.longitude Optional input: SAGA grid file giving for each pixel the longitude in degree

out.direct Optional output grid file for direct insolation



60 rsaga.insolation

out.diffuse Optional output grid file for diffuse insolation

out.total Optional output grid file for total insolation, i.e. the sum of direct and diffuse
insolation

horizontal logical; project radiation onto a horizontal surface? (default: FALSE, i.e. use the
actual inclined surface as a reference area)

solconst solar constant in Joule; default: 8.164 J/cm2/min (=1360.7 kWh/m2; the more
commonly used solar constant of 1367 kWh/m2 corresponds to 8.202 J/cm2/min)

atmosphere height of atmosphere in m; default: 12000m
water.vapour.pressure

if no water vapour grid is given, this argument specifies a constant water vapour
pressure that is uniform in space; in mbar, default 10 mbar

type type of time period: "moment" (equivalent: 0) for a single instant, "day" (or 1)
for a single day, "range.of.days" (or 2), or "same.moment.range.of.days"
(or 3) for the same moment in a range of days; default: "moment"

time.step time resolution in hours for discretization within a day

day.step time resolution in days for a range of days

days numeric vector of length 2, specifying the first and last day of a range of days
(for types 2 and 3)

moment if type="moment" or "same.moment.range.of.days", moment specifies the
time of the day (hour between 0 and 24) for which the insolation is to be calcu-
lated

latitude if no in.latitude grid is given, this will specify a fixed geographical latitude
for the entire grid

bending should planetary bending be modeled? (default: FALSE)

radius planetary radius

lat.offset latitude relates to grids "bottom"(equivalent code: 0), "center" (1), "top"
(2), or "user"-defined reference (default: "user"); in the latter case, lat.ref.user
defines the reference

lat.ref.user if in.latitude is missing and lat.offset="user", then this numeric value
defines the latitudinal reference (details??)

lon.offset local time refers to grid’s "left" edge (code 0), "center" (1), "right" edge
(2), or a "user"-defined reference.

lon.ref.user if in.longitude is missing and lon.offset="user", then this numeric value
defines the reference of the local time (details??)

env RSAGA geoprocessing environment obtained with rsaga.env(); this argument
is required for version control (see Note)

... optional arguments to be passed to rsaga.geoprocessor(), including the env
RSAGA geoprocessing environment

Details

Calculation of incoming solar radiation (insolation). Based on the SADO (System for the Analysis
of Discrete Surfaces) routines developed by Boehner & Trachinow.



rsaga.intersect.polygons 61

Value

The type of object returned depends on the intern argument passed to the rsaga.geoprocessor().
For intern=FALSE it is a numerical error code (0: success), or otherwise (default) a character vector
with the module’s console output.

Note

This function uses module Insolation (code: 3) from SAGA library ta_lighting. It is available
in SAGA GIS 2.0.4 and 2.0.5 but not 2.0.6 and 2.0.7; see rsaga.pisr().

Author(s)

Alexander Brenning (R interface), Olaf Conrad (SAGA module)

See Also

rsaga.solar.radiation(), rsaga.pisr(), rsaga.hillshade()

rsaga.intersect.polygons

Spatial intersection of two polygon layers

Description

The function rsaga.intersect.polygons calculates the geometric intersection of two overlayed
polygon layers using SAGA module "Intersect".

Usage

rsaga.intersect.polygons(
layer_a = NULL,
layer_b = NULL,
result = NULL,
split = FALSE,
load = NULL,
env = rsaga.env()

)

Arguments

layer_a A character string representing the path to a polygon shapefile.
layer_b A character string representing the path to a polygon shapefile with which to

intersect layer_a.
result A character string indicating where the resulting shapefile should be stored.
split If TRUE, multipart polygons become separated polygons (default: FALSE).
load Deprecated, will be removed in a future release. Ignored if FALSE, and causes

an error if TRUE (default: NULL).
env RSAGA geoprocessing environment created by rsaga.env().



62 rsaga.inverse.distance

Details

Function gIntersection in rgeos package can also be used to define the intersection between two
polygon layers. However, rsaga.intersect.polygons() will be usually much faster, especially
when intersecting thousands of polygons.

Value

The function saves the output shapefile to the path indicated in function argument result.

Author(s)

Jannes Muenchow and Alexander Brenning (R interface), Olaf Conrad and Angus Johnson (SAGA
modules)

rsaga.inverse.distance

Spatial Interpolation Methods

Description

Spatial interpolation of point data using inverse distance to a power (inverse distance weighting,
IDW), nearest neighbors, or modified quadratic shephard.

Usage

rsaga.inverse.distance(
in.shapefile,
out.grid,
field,
power = 1,
maxdist,
nmax = 100,
target,
env = rsaga.env(),
...

)

rsaga.nearest.neighbour(
in.shapefile,
out.grid,
field,
target,
env = rsaga.env(),
...

)

rsaga.modified.quadratic.shephard(



rsaga.inverse.distance 63

in.shapefile,
out.grid,
field,
quadratic.neighbors = 13,
weighting.neighbors = 19,
target,
env = rsaga.env(),
...

)

rsaga.triangulation(
in.shapefile,
out.grid,
field,
target,
env = rsaga.env(),
...

)

Arguments

in.shapefile Input: point shapefile (default extension: .shp).

out.grid Output: filename for interpolated grid (SAGA grid file). Existing files will be
overwritten!

field numeric or character: number or name of attribute in the shapefile’s attribute
table to be interpolated; the first attribute is represented by a zero.

power numeric (>0): exponent used in inverse distance weighting (usually 1 or 2)

maxdist numeric: maximum distance of points to be used for inverse distance interpola-
tion (search radius); no search radius is applied when this argument is missing
or equals Inf

nmax Maximum number of nearest points to be used for interpolation; nmax=Inf is a
valid value (no upper limit)

target required argument of type list: parameters identifying the target area, e.g. the
x/y extent and cellsize, or name of a reference grid; see rsaga.target().

env RSAGA geoprocessing environment created by rsaga.env(), required because
module(s) depend(s) on SAGA version

... Optional arguments to be passed to rsaga.geoprocessor(), including the env
RSAGA geoprocessing environment.

quadratic.neighbors

integer >=5; default 13.
weighting.neighbors

integer >=3; default 19.

Details

These functions use modules from the grid_gridding SAGA GIS library. They do not support
SAGA GIS 2.0.4, which differs in some argument names and parameterizations. Target grid param-



64 rsaga.lib.prefix

eterization by grid file name currently doesn’t work with SAGA GIS 2.1.0 Release Candidate 1 (see
also rsaga.target()); stay tuned for future updates and fixes.

Note

The ’Inverse Distance Weighted’ module of SAGA GIS not only support inverse-distance weighted
interpolation, but also exponential and other weighting schemes (command line argument WEIGHT-
ING); these are however not accessible through this function, but only through the rsaga.geoprocessor,
if needed. See rsaga.get.usage("grid_gridding","Inverse Distance Weighted") for de-
tails.

See the example section in the help file for shapefiles::write.shapefile() in package shapefiles
to learn how to apply these interpolation functions to a shapefile exported from a data.frame.

Modified Quadratic Shephard method: based on module 660 in TOMS (see references).

Author(s)

Alexander Brenning (R interface), Andre Ringeler and Olaf Conrad (SAGA modules)

References

QSHEP2D: Fortran routines implementing the Quadratic Shepard method for bivariate interpolation
of scattered data (see R. J. Renka, ACM TOMS 14 (1988) pp.149-150). Classes: E2b. Interpolation
of scattered, non-gridded multivariate data.

See Also

rsaga.target(); gstat::idw() in package gstat.

rsaga.lib.prefix Determine prefix for SAGA GIS library names

Description

Internal function that determines the possible prefix for SAGA GIS library names - relevant for
non-Windows SAGA GIS pre-2.1.0.

Usage

rsaga.lib.prefix(env)

Arguments

env list, setting up a SAGA geoprocessing environment as created by rsaga.env().

Details

Some non-Windows versions of saga_cmd require library names with a "lib" prefix, e.g. libio_grid
instead of io_grid. This function, which is called by rsaga.env() tries to guess this behaviour
based on the operating system and SAGA GIS version.



rsaga.local.morphometry 65

Value

A character string, either "" or "lib".

See Also

rsaga.env()

Examples

## Not run:
env = rsaga.env()
# obtained by a call to rsaga.lib.prefix:
env$lib.prefix

# more explicitly:
rsaga.lib.prefix(env=env)

## End(Not run)

rsaga.local.morphometry

Local Morphometry

Description

Calculates local morphometric terrain attributes (i.e. slope, aspect and curvatures). Intended for use
with SAGA versions 2.1.0 and older. Use rsaga.slope.asp.curv() for SAGA 2.1.1+

Usage

rsaga.local.morphometry(
in.dem,
out.slope,
out.aspect,
out.curv,
out.hcurv,
out.vcurv,
method = "poly2zevenbergen",
env = rsaga.env(),
...

)

rsaga.slope(
in.dem,
out.slope,
method = "poly2zevenbergen",
env = rsaga.env(),



66 rsaga.local.morphometry

...
)

rsaga.aspect(
in.dem,
out.aspect,
method = "poly2zevenbergen",
env = rsaga.env(),
...

)

rsaga.curvature(
in.dem,
out.curv,
method = "poly2zevenbergen",
env = rsaga.env(),
...

)

rsaga.plan.curvature(
in.dem,
out.hcurv,
method = "poly2zevenbergen",
env = rsaga.env(),
...

)

rsaga.profile.curvature(
in.dem,
out.vcurv,
method = "poly2zevenbergen",
env = rsaga.env(),
...

)

Arguments

in.dem input: digital elevation model (DEM) as SAGA grid file (default file extension:
.sgrd)

out.slope optional output: slope (in radians)

out.aspect optional output: aspect (in radians; north=0, clockwise angles)

out.curv optional output: curvature

out.hcurv optional output: horizontal curvature (plan curvature)

out.vcurv optional output: vertical curvature (profile curvature)

method character (or numeric): algorithm (see References):

• 0 Maximum Slope - Travis et al. (1975) ("maxslope", or 0)
• 1 Max. Triangle Slope - Tarboton (1997) ("maxtriangleslope", or 1)



rsaga.parallel.processing 67

• 2 Least Squares Fit Plane - Costa-Cabral and Burgess (1996) ("lsqfitplane",
or 2)

• 3 Fit 2nd Degree Polynomial - Bauer et al. (1985) ("poly2bauer", or 3)
• 4 Fit 2nd Degree Polynomial - Heerdegen and Beran (1982) ("poly2heerdegen",

or 4)
• 5 default: Fit 2nd Degree Polynomial - Zevenbergen and Thorne (1987)

("poly2zevenbergen", or 5)
• 6 Fit 3rd Degree Polynomial - Haralick (1983) ("poly3haralick", or 6).

env list, setting up a SAGA geoprocessing environment as created by rsaga.env()

... further arguments to rsaga.geoprocessor()

Value

The type of object returned depends on the intern argument passed to the rsaga.geoprocessor().
For intern=FALSE it is a numerical error code (0: success), or otherwise (default) a character vector
with the module’s console output.

Author(s)

Alexander Brenning and Donovan Bangs (R interface), Olaf Conrad (SAGA module)

References

For references and algorithm changes in SAGA GIS 2.1.1+ see rsaga.slope.asp.curv().

See Also

rsaga.slope.asp.curv(), rsaga.parallel.processing(), rsaga.geoprocessor(), rsaga.env()

Examples

## Not run:
# a simple slope algorithm:
rsaga.slope("lican.sgrd","slope","maxslope")
# same for ASCII grids (default extension .asc):
rsaga.esri.wrapper(rsaga.slope,in.dem="lican",out.slope="slope",method="maxslope")

## End(Not run)

rsaga.parallel.processing

Parallel Processing



68 rsaga.parallel.processing

Description

Calculate the size of the local catchment area (contributing area), the catchment height, catchment
slope and aspect, and flow path length, using parallel processing algorithms including the recom-
mended multiple flow direction algorithm. This set of algorithms processes a digital elevation model
(DEM) downwards from the highest to the lowest cell.
No longer supported with SAGA GIS 2.1.3+. See rsaga.topdown.processing().

Usage

rsaga.parallel.processing(
in.dem,
in.sinkroute,
in.weight,
out.carea,
out.cheight,
out.cslope,
out.caspect,
out.flowpath,
step,
method = "mfd",
linear.threshold = Inf,
convergence = 1.1,
env = rsaga.env(),
...

)

Arguments

in.dem input: digital elevation model (DEM) as SAGA grid file (default file extension:
.sgrd)

in.sinkroute optional input: SAGA grid with sink routes

in.weight optional intput: SAGA grid with weights

out.carea output: catchment area grid

out.cheight optional output: catchment height grid

out.cslope optional output: catchment slope grid

out.caspect optional output: catchment aspect grid

out.flowpath optional output: flow path length grid

step integer >=1: step parameter

method character or numeric: choice of processing algorithm: Deterministic 8 ("d8" or
0), Rho 8 ("rho8" or 1), Braunschweiger Reliefmodell ("braunschweig" or 2),
Deterministic Infinity ("dinf" or 3), Multiple Flow Direction ("mfd" or 4, the
default), Multiple Triangular Flow Direction ("mtfd", or 5).

linear.threshold

numeric (number of grid cells): threshold above which linear flow (i.e. the De-
terministic 8 algorithm) will be used; linear flow is disabled for linear.threshold=Inf
(the default)



rsaga.parallel.processing 69

convergence numeric >=0: a parameter for tuning convergent/ divergent flow; default value
of 1.1 gives realistic results and should not be changed

env list, setting up a SAGA geoprocessing environment as created by rsaga.env()

... further arguments to rsaga.geoprocessor()

Details

Refer to the references for details on the available algorithms.

Value

The type of object returned depends on the intern argument passed to the rsaga.geoprocessor().
For intern=FALSE it is a numerical error code (0: success), or otherwise (the default) a character
vector with the module’s console output.

Note

This function uses module Parallel Processing (version 2.0.7+: Catchment Area (Parallel)
from SAGA library ta_hydrology.

The SAGA GIS 2.0.6+ version of the module adds more (optional) input and output grids that
are currently not supported by this wrapper function. Use rsaga.geoprocessor() for access to
these options, and see rsaga.get.usage("ta_hydrology","Catchment Area (Parallel)") for
information on new arguments.

Author(s)

Alexander Brenning (R interface), Olaf Conrad (SAGA module), Thomas Grabs (MTFD algorithm)

References

Deterministic 8:

O’Callaghan, J.F., Mark, D.M. (1984): The extraction of drainage networks from digital elevation
data. Computer Vision, Graphics and Image Processing, 28: 323-344.

Rho 8:

Fairfield, J., Leymarie, P. (1991): Drainage networks from grid digital elevation models. Water
Resources Research, 27: 709-717.

Braunschweiger Reliefmodell:

Bauer, J., Rohdenburg, H., Bork, H.-R. (1985): Ein Digitales Reliefmodell als Vorraussetzung fuer
ein deterministisches Modell der Wasser- und Stoff-Fluesse. Landschaftsgenese und Landschaft-
soekologie, H. 10, Parameteraufbereitung fuer deterministische Gebiets-Wassermodelle, Grundla-
genarbeiten zu Analyse von Agrar-Oekosystemen, eds.: Bork, H.-R., Rohdenburg, H., p. 1-15.

Deterministic Infinity:

Tarboton, D.G. (1997): A new method for the determination of flow directions and upslope areas in
grid digital elevation models. Water Ressources Research, 33(2): 309-319.

Multiple Flow Direction:



70 rsaga.pisr

Freeman, G.T. (1991): Calculating catchment area with divergent flow based on a regular grid.
Computers and Geosciences, 17: 413-22.

Quinn, P.F., Beven, K.J., Chevallier, P., Planchon, O. (1991): The prediction of hillslope flow paths
for distributed hydrological modelling using digital terrain models. Hydrological Processes, 5: 59-
79.

Multiple Triangular Flow Direction:

Seibert, J., McGlynn, B. (2007): A new triangular multiple flow direction algorithm for computing
upslope areas from gridded digital elevation models. Water Ressources Research, 43, W04501.

See Also

rsaga.topdown.processing(), rsaga.wetness.index(), rsaga.geoprocessor(), rsaga.env()

Examples

## Not run:
# SAGA GIS 2.0.6+:
rsaga.get.usage("ta_hydrology","Catchment Area (Parallel)")
# earlier versions of SAGA GIS:
#rsaga.get.usage("ta_hydrology","Parallel Processing")
# execute model with typical settings:
rsaga.parallel.processing(in.dem = "dem", out.carea = "carea", out.cslope = "cslope")
# cslope is in radians - convert to degree:
fac = round(180/pi, 4)
formula = paste(fac, "*a", sep = "")
rsaga.grid.calculus("cslope", "cslopedeg", formula)

## End(Not run)

rsaga.pisr Potential incoming solar radiation

Description

This function calculates the potential incoming solar radiation in an area using different atmospheric
models; module available in SAGA GIS 2.0.6+.

Usage

rsaga.pisr(
in.dem,
in.svf.grid = NULL,
in.vapour.grid = NULL,
in.latitude.grid = NULL,
in.longitude.grid = NULL,
out.direct.grid,
out.diffuse.grid,



rsaga.pisr 71

out.total.grid = NULL,
out.ratio.grid = NULL,
out.duration,
out.sunrise,
out.sunset,
local.svf = TRUE,
latitude,
unit = c("kWh/m2", "kJ/m2", "J/cm2"),
solconst = 1367,
enable.bending = FALSE,
bending.radius = 6366737.96,
bending.lat.offset = "user",
bending.lat.ref.user = 0,
bending.lon.offset = "center",
bending.lon.ref.user = 0,
method = c("height", "components", "lumped"),
hgt.atmosphere = 12000,
hgt.water.vapour.pressure = 10,
cmp.pressure = 1013,
cmp.water.content = 1.68,
cmp.dust = 100,
lmp.transmittance = 70,
time.range = c(0, 24),
time.step = 0.5,
start.date = list(day = 21, month = 3),
end.date = NULL,
day.step = 5,
env = rsaga.env(),
...

)

Arguments

in.dem name of input digital elevation model (DEM) grid in SAGA grid format (default
extension: .sgrd)

in.svf.grid Optional input grid in SAGA format: Sky View Factor; see also local.svf

in.vapour.grid Optional input grid in SAGA format: Water vapour pressure (mbar); see also
argument hgt.water.vapour.pressure

in.latitude.grid

Optional input grid in SAGA format: Latitude (degree) of each grid cell
in.longitude.grid

see in.latitude.grid
out.direct.grid

Output grid: Direct insolation (unit selected by unit argument)
out.diffuse.grid

Output grid: Diffuse insolation
out.total.grid Optional output grid: Total insolation, i.e. sum of direct and diffuse incoming

solar radiation



72 rsaga.pisr

out.ratio.grid Optional output grid: Direct to diffuse ratio

out.duration Optional output grid: Duration of insolation

out.sunrise Optional output grid: time of sunrise; only calculated if time span is set to single
day

out.sunset Time of sunset; see out.sunrise

local.svf logical (default: TRUE; if TRUE, use sky view factor based on local slope (after
Oke, 1988), if no sky view factor grid is provided in in.svf.grid

latitude Geographical latitude in degree North (negative values indicate southern hemi-
sphere)

unit unit of insolation output grids: "kWh/m2" (default) "kJ/m2", or "J/cm2"

solconst solar constant, defaults to 1367 W/m2

enable.bending logical (default: FALSE): incorporate effects of planetary bending?

bending.radius Planetary radius, default 6366737.96
bending.lat.offset

if bending is enabled: latitudinal reference is "user"-defined (default), or rela-
tive to "top", "center" or "bottom" of grid?

bending.lat.ref.user

user-defined lat. reference for bending, see bending.lat.offset

bending.lon.offset

longitudinal reference, i.e. local time, is "user"-defined, or relative to "top",
"center" (default) or "bottom" of grid?

bending.lon.ref.user

user-defined reference for local time (Details??)

method specifies how the atmospheric components should be accounted for: either based
on the height of atmosphere and vapour pressure ("height", or numeric code
0), or air pressure, water and dust content ("components", code 1), or lumped
atmospheric transmittance ("lumped", code 0)

hgt.atmosphere Height of atmosphere (in m); default 12000 m
hgt.water.vapour.pressure

Water vapour pressure in mbar (default 10 mbar); This value is used if no vapour
pressure grid is given in argument in.vapour.grid

cmp.pressure atmospheric pressure in mbar, defaults to 1013 mbar
cmp.water.content

water content of a vertical slice of the atmosphere in cm: between 1.5 and 1.7cm,
average 1.68cm (default)

cmp.dust dust factor in ppm; defaults to 100 ppm
lmp.transmittance

transmittance of the atmosphere in percent; usually between 60 (humid areas)
and 80 percent (deserts)

time.range numeric vector of length 2: time span (hours of the day) for numerical integra-
tion

time.step time step in hours for numerical integration



rsaga.pisr 73

start.date list of length two, giving the start date in day and month components as num-
bers; these numbers are one-based (SAGA_CMD uses zero-based numbers in-
ternally), i.e. Jan. 1st is list(day=1,month=1)

end.date see start.date

day.step if days indicates a range of days, this specifies the time step (number of days)
for calculating the incoming solar radiation

env RSAGA geoprocessing environment obtained with rsaga.env(); this argument
is required for version control (see Note)

... optional arguments to be passed to rsaga.geoprocessor()

Details

According to SAGA GIS 2.0.7 documentation, "Most options should do well, but TAPES-G based
diffuse irradiance calculation ("Atmospheric Effects" methods 2 and 3) needs further revision!" I.e.
be careful with method = "components" and method = "lumped".

Note

This module is computationally very intensive (depending on the size of the grid and the time
resolution, of course). The performance seems to have much improved in SAGA GIS 2.1.0, which
by default runs this module in multicore mode (at the release candidate 1 for Windows does).

SAGA_CMD uses zero-based days and months, but this R function uses the standard one-based
days and months (e.g. day 1 is the first day of the month, month 1 is January) and translates to the
SAGA system.

This function uses module Potential Incoming Solar Radiation from SAGA library ta_lighting in
SAGA version 2.0.6+.

Author(s)

Alexander Brenning (R interface), Olaf Conrad (SAGA module)

References

Boehner, J., Antonic, O. (2009): Land surface parameters specific to topo-climatology. In: Hengl,
T. and Reuter, H. I. (eds.): Geomorphometry - Concepts, Software, Applications. Elsevier.

Oke, T.R. (1988): Boundary layer climates. London, Taylor and Francis.

Wilson, J.P., Gallant, J.C. (eds.), 2000: Terrain analysis - principles and applications. New York,
John Wiley and Sons.

See Also

rsaga.hillshade(); for similar modules in older SAGA versions (pre-2.0.6) see rsaga.solar.radiation()
and rsaga.insolation()



74 rsaga.pisr2

rsaga.pisr2 Potential incoming solar radiation SAGA 2.2.2+

Description

This function calculates the potential incoming solar radiation in an area using different atmospheric
models; This function reflects changes to the module with SAGA 2.2.2+. For SAGA versions 2.0.6
to 2.2.1 please see rsaga.pisr().

Usage

rsaga.pisr2(
in.dem,
in.svf.grid = NULL,
in.vapour.grid = NULL,
in.linke.grid = NULL,
out.direct.grid,
out.diffuse.grid,
out.total.grid = NULL,
out.ratio.grid = NULL,
out.duration,
out.sunrise,
out.sunset,
local.svf = TRUE,
location = c("latitude", "grid"),
latitude = 53,
unit = c("kWh/m2", "kJ/m2", "J/cm2"),
solconst = 1367,
method = c("height", "components", "lumped", "hofierka"),
hgt.atmosphere = 12000,
cmp.pressure = 1013,
cmp.water.content = 1.68,
cmp.dust = 100,
lmp.transmittance = 70,
time.range = c(0, 24),
time.step = 0.5,
start.date = list(day = 31, month = 10, year = 2015),
end.date = NULL,
day.step = 5,
env = rsaga.env(),
...

)

Arguments

in.dem name of input digital elevation model (DEM) grid in SAGA grid format (default
extension: .sgrd)



rsaga.pisr2 75

in.svf.grid Optional input grid in SAGA format: Sky View Factor; see also local.svf

in.vapour.grid Optional input grid in SAGA format: Water vapour pressure (mbar), for use with
method = "height"; default 10 mbar

in.linke.grid Optional input grid in SAGA format: Linke turbidity coefficient, for use with
method = "hofierka"; default 3.0

out.direct.grid

Output grid: Direct insolation (unit selected by unit argument)
out.diffuse.grid

Output grid: Diffuse insolation

out.total.grid Optional output grid: Total insolation, i.e. sum of direct and diffuse incoming
solar radiation

out.ratio.grid Optional output grid: Direct to diffuse ratio

out.duration Optional output grid: Duration of insolation

out.sunrise Optional output grid: time of sunrise; only calculated if time span is set to single
day

out.sunset Time of sunset; see out.sunrise

local.svf logical (default: TRUE; if TRUE, use sky view factor based on local slope (after
Oke, 1988), if no sky view factor grid is provided in in.svf.grid

location specified whether to use constant latitude supplied by latitude below ("latitude"
or code 0; default) or as calculated from the grid system ("grid" or code 1)

latitude Geographical latitude in degree North (negative values indicate southern hemi-
sphere)

unit unit of insolation output grids: "kWh/m2" (default) "kJ/m2", or "J/cm2"

solconst solar constant, defaults to 1367 W/m2

method specifies how the atmospheric components should be accounted for: either based
on the height of atmosphere and vapour pressure ("height", or numeric code
0), or air pressure, water and dust content ("components", code 1), or lumped
atmospheric transmittance ("lumped", code 2), or by the method of Hofierka
and Suri, 2009 ("hofierka", code 3). Default: "lumped".

hgt.atmosphere Height of atmosphere (in m); default 12000 m. For use with method = "height"

cmp.pressure atmospheric pressure in mbar, defaults to 1013 mbar. For use with method =
"components"

cmp.water.content

water content of a vertical slice of the atmosphere in cm: between 1.5 and 1.7cm,
average 1.68cm (default). For use with method = "components"

cmp.dust dust factor in ppm; defaults to 100 ppm. For use with method = "components"

lmp.transmittance

transmittance of the atmosphere in percent; usually between 60 (humid areas)
and 80 percent (deserts)

time.range numeric vector of length 2: time span (hours of the day) for numerical integra-
tion

time.step time step in hours for numerical integration



76 rsaga.pisr2

start.date list of length three, giving the start date in day, month, and year components
as numbers; month is one-based (SAGA_CMD uses zero-based numbers inter-
nally), i.e. Jan. 1st 2015 is list(day=1,month=1,year=2015)

end.date see start.date

day.step if days indicates a range of days, this specifies the time step (number of days)
for calculating the incoming solar radiation

env RSAGA geoprocessing environment obtained with rsaga.env(); this argument
is required for version control (see Note)

... optional arguments to be passed to rsaga.geoprocessor()

Details

According to SAGA GIS 2.0.7 documentation, "Most options should do well, but TAPES-G based
diffuse irradiance calculation ("Atmospheric Effects" methods 2 and 3) needs further revision!" I.e.
be careful with method = "components" and method = "lumped".

Note

SAGA_CMD uses zero-based months, but this R function uses the standard one-based months (e.g.
day 1 is the first day of the month, month 1 is January) and translates to the SAGA system.

This function uses module Potential Incoming Solar Radiation from SAGA library ta_lighting
in SAGA version 2.0.6+. Changes to the module with SAGA 2.2.2+ include adding year to the
*.date arguments to allow calculation across years. The method of Hofierka and Suri (2009) is
added, which uses the Linke turbidity coefficient. Duration of insolation ("out.duration") is only
calculated when the time period is set to a single day.

Author(s)

Alexander Brenning & Donovan Bangs (R interface), Olaf Conrad (SAGA module)

References

Boehner, J., Antonic, O. (2009): Land surface parameters specific to topo-climatology. In: Hengl,
T. and Reuter, H. I. (eds.): Geomorphometry - Concepts, Software, Applications. Elsevier.

Oke, T.R. (1988): Boundary layer climates. London, Taylor and Francis.

Wilson, J.P., Gallant, J.C. (eds.), 2000: Terrain analysis - principles and applications. New York,
John Wiley and Sons.

Hofierka, J., Suri, M. (2002): The solar radiation model for Open source GIS: implementation and
applications. International GRASS users conference in Trento, Italy, September 2002

See Also

rsaga.pisr(); for similar modules in older SAGA versions (pre-2.0.6) see rsaga.solar.radiation()
and rsaga.insolation(); rsaga.hillshade()



rsaga.set.env 77

rsaga.set.env Internal function that sets the RSAGA Geoprocessing Evironment
manually

Description

Internal function that sets the RSAGA Geoprocessing Evironment manually

Usage

rsaga.set.env(
workspace = NULL,
cmd = NULL,
path = NULL,
modules = NULL,
version = NA,
cores = NULL,
parallel = NULL

)

Arguments

workspace path of the working directory for SAGA; defaults to the current directory (".").

cmd name of the SAGA command line program; defaults to saga_cmd.exe, its name
under Windows

path path in which to find cmd; rsaga.env is usually able to find SAGA on your
system if it is installed; see Details.

modules path in which to find SAGA libraries; see Details

version optional character string: SAGA GIS (API) version, e.g. "2.0.8"; if missing,
a call to rsaga.get.version() is used to determine version number of SAGA
API

cores optional numeric argument, or NA: number of cores used by SAGA GIS; sup-
ported only by SAGA GIS 2.1.0 (and higher), ignored otherwise (with a warn-
ing). Multicore-enabled SAGA GIS modules such as the one used by rsaga.pisr()
seem to run in multicore mode by default when this argument is not specified,
therefore cores should only be specified to use a smaller number of cores than
available on a machine.

parallel optional logical argument (default: FALSE): if TRUE, run RSAGA functions that
are capable of parallel processing in parallel mode; note that this is completely
independent of the behaviour of SAGA GIS (which can be controlled using the
cores argument); currently only some RSAGA functions support parallel pro-
cessing (e.g., pick.from.ascii.grid() or rsaga.get.modules()). parallel=TRUE
requires that a parallel backend such as doSNOW or doMC is available and has
been started prior to calling any parallelized RSAGA function, otherwise warn-
ings may be generated



78 rsaga.sgrd.to.esri

rsaga.sgrd.to.esri Convert SAGA grids to ESRI ASCII/binary grids

Description

rsaga.sgrd.to.esri converts grid files from SAGA’s (version 2) grid format (.sgrd) to ESRI’s
ASCII (.asc) and binary (.flt) format.

Usage

rsaga.sgrd.to.esri(
in.sgrds,
out.grids,
out.path,
format = "ascii",
georef = "corner",
prec = 5,
...

)

Arguments

in.sgrds character vector of SAGA grid files (.sgrd) to be converted; files are expected
to be found in folder rsaga.env()$workspace, or, if an optional env argument
is provided, in env$workspace

out.grids character vector of ESRI ASCII/float output file names; defaults to in.sgrds
with the file extension being replaced by .asc or .flt, depending on format.
Files will be placed in folder out.path, existing files will be overwritten

out.path folder for out.grids

format output file format, either "ascii" (default; equivalent: format=1) for ASCII
grids or "binary" (equivalent: 0) for binary ESRI grids (.flt).

georef character: "corner" (equivalent numeric code: 0) or "center" (default; equiv-
alent: 1). Determines whether the georeference will be related to the center or
corner of its extreme lower left grid cell.

prec number of digits when writing floating point values to ASCII grid files; either
a single number (to be replicated if necessary), or a numeric vector of length
length(in.grids)

... optional arguments to be passed to rsaga.geoprocessor(), including the env
RSAGA geoprocessing environment

Value

The type of object returned depends on the intern argument passed to the rsaga.geoprocessor().
For intern=FALSE it is a numerical error code (0: success), or otherwise (default) a character vector
with the module’s console output.



rsaga.sink.removal 79

Note

This function uses module 0 from the SAGA library io_grid.

Author(s)

Alexander Brenning (R interface), Olaf Conrad (SAGA module)

See Also

rsaga.esri.wrapper() for an efficient way of applying RSAGA to ESRI ASCII/binary grids;
rsaga.env()

rsaga.sink.removal Sink Removal Remove sinks from a digital elevation model by deepen-
ing drainage routes or filling sinks.

Description

Sink Removal Remove sinks from a digital elevation model by deepening drainage routes or filling
sinks.

Usage

rsaga.sink.removal(in.dem, in.sinkroute, out.dem, method = "fill", ...)

Arguments

in.dem input: digital elevation model (DEM) as SAGA grid file (default file extension:
.sgrd)

in.sinkroute optional input: sink route grid file

out.dem output: modified DEM

method character string or numeric value specifying the algorithm (partial string match-
ing will be applied): "deepen drainage route" (or 0): reduce the elevation of
pixels in order to achieve drainage out of the former sinks "fill sinks" (or 1):
fill sinks until none are left

... optional arguments to be passed to rsaga.geoprocessor(), including the env
RSAGA geoprocessing environment

Value

The type of object returned depends on the intern argument passed to the rsaga.geoprocessor().
For intern=FALSE it is a numerical error code (0: success), or otherwise (default) a character vector
with the module’s console output.

Note

This function uses module 1 from SAGA library ta_preprocessor.



80 rsaga.sink.route

Author(s)

Alexander Brenning (R interface), Olaf Conrad (SAGA module)

See Also

rsaga.sink.route(), rsaga.fill.sinks()

Examples

## Not run: rsaga.sink.route("dem","sinkroute")
rsaga.sink.removal("dem","sinkroute","dem-preproc",method="deepen")
## End(Not run)

rsaga.sink.route Sink Drainage Route Detection

Description

Sink drainage route detection.

Usage

rsaga.sink.route(in.dem, out.sinkroute, threshold, thrsheight = 100, ...)

Arguments

in.dem input: digital elevation model (DEM) as SAGA grid file (default file extension:
.sgrd)

out.sinkroute output: sink route grid file: non-sinks obtain a value of 0, sinks are assigned an
integer between 0 and 8 indicating the direction to which flow from this sink
should be routed

threshold logical: use a threshold value?

thrsheight numeric: threshold value (default: 100)

... optional arguments to be passed to rsaga.geoprocessor(), including the env
RSAGA geoprocessing environment

Value

The type of object returned depends on the intern argument passed to the rsaga.geoprocessor().
For intern=FALSE it is a numerical error code (0: success), or otherwise (default) a character vector
with the module’s console output.

Note

I assume that flow directions are coded as 0 = north, 1 = northeast, 2 = east, ..., 7 = northwest, as in
rsaga.fill.sinks().



rsaga.slope.asp.curv 81

Author(s)

Alexander Brenning (R interface), Olaf Conrad (SAGA module)

See Also

rsaga.sink.removal()

Examples

## Not run: rsaga.sink.route("dem","sinkroute")
rsaga.sink.removal("dem","sinkroute","dem-preproc",method="deepen")
## End(Not run)

rsaga.slope.asp.curv Slope, Aspect, Curvature

Description

Calculates local morphometric terrain attributes (i.e. slope, aspect, and curvatures). Intended for
use with SAGA v 2.1.1+. For older versions use rsaga.local.morphometry().

Usage

rsaga.slope.asp.curv(
in.dem,
out.slope,
out.aspect,
out.cgene,
out.cprof,
out.cplan,
out.ctang,
out.clong,
out.ccros,
out.cmini,
out.cmaxi,
out.ctota,
out.croto,
method = "poly2zevenbergen",
unit.slope = "radians",
unit.aspect = "radians",
env = rsaga.env(),
...

)



82 rsaga.slope.asp.curv

Arguments

in.dem input: digital elevation model as SAGA grid file (.sgrd)

out.slope optional output: slope

out.aspect optional output: aspect

out.cgene optional output: general curvature (1 / map units)

out.cprof optional output: profile curvature (vertical curvature; 1 / map units)

out.cplan optional output: plan curvature (horizontal curvature; 1 / map units)

out.ctang optional output: tangential curvature (1 / map units)

out.clong optional output: longitudinal curvature (1 / map units) Zevenbergen & Thorne
(1987) refer to this as profile curvature

out.ccros optional output: cross-sectional curvature (1 / map units) Zevenbergen & Thorne
(1987) refer to this as the plan curvature

out.cmini optional output: minimal curvature (1 / map units)

out.cmaxi optional output: maximal curvature (1 / map units)

out.ctota optional output: total curvature (1 / map units)

out.croto optional output: flow line curvature (1 / map units)

method character algorithm (see References):

• 0 Maximum Slope - Travis et al. (1975) ("maxslope")
• 1 Max. Triangle Slope - Tarboton (1997) ("maxtriangleslope")
• 2 Least Squares Fit Plane - Costa-Cabral & Burgess (1996) ("lsqfitplane")
• 3 Fit 2nd Degree Polynomial - Evans (1979) ("poly2evans")
• 4 Fit 2nd Degree Polynomial - Heerdegen and Beran (1982) ("poly2heerdegen")
• 5 Fit 2nd Degree Polynomial - Bauer et al. (1985) ("poly2bauer")
• 6 default: Fit 2nd Degree Polynomial - Zevenbergen & Thorne (1987)

("poly2zevenbergen")
• 7 Fit 3rd Degree Polynomial - Haralick (1983) ("poly3haralick")

unit.slope character or numeric (default "radians"):

• 0 "radians"

• 1 "degrees"

• 2 "percent"

unit.aspect character or numeric (default is 0, or "radians"):

• 0 "radians"

• 1 "degrees"

env list, setting up a SAGA geoprocessing environment as created by rsaga.env()

... further arguments to rsaga.geoprocessor()

Details

Profile and plan curvature calculation (out.cprof, out.cplan) changed in SAGA GIS 2.1.1+ com-
pared to earlier versions. See the following thread on sourceforge.net for an ongoing discussion:
https://sourceforge.net/p/saga-gis/discussion/354013/thread/e9d07075/#5727

https://sourceforge.net/p/saga-gis/discussion/354013/thread/e9d07075/#5727


rsaga.slope.asp.curv 83

Value

The type of object returned depends on the intern argument passed to the rsaga.geoprocessor().
For intern=FALSE it is a numerical error code (0: success), or otherwise (default) a character vector
with the module’s console output.

Author(s)

Alexander Brenning and Donovan Bangs (R interface), Olaf Conrad (SAGA module)

References

General references:

Jones KH (1998) A comparison of algorithms used to compute hill slope as a property of the DEM.
Computers and Geosciences. 24 (4): 315-323.

References on specific methods:

Maximum Slope:

Travis, M.R., Elsner, G.H., Iverson, W.D., Johnson, C.G. (1975): VIEWIT: computation of seen
areas, slope, and aspect for land-use planning. USDA F.S. Gen. Tech. Rep. PSW-11/1975, 70 p.
Berkeley, California, U.S.A.

Maximum Triangle Slope:

Tarboton, D.G. (1997): A new method for the determination of flow directions and upslope areas in
grid digital elevation models. Water Ressources Research, 33(2): 309-319.

Least Squares or Best Fit Plane:

Beasley, D.B., Huggins, L.F. (1982): ANSWERS: User’s manual. U.S. EPA-905/9-82-001, Chicago,
IL, 54 pp.

Costa-Cabral, M., Burges, S.J. (1994): Digital Elevation Model Networks (DEMON): a model of
flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research,
30(6): 1681-1692.

Fit 2nd Degree Polynomial:

Evans, I.S. (1979): An integrated system of terrain analysis and slope mapping. Final Report on
grant DA-ERO-591-73-G0040. University of Durham, England.

Bauer, J., Rohdenburg, H., Bork, H.-R. (1985): Ein Digitales Reliefmodell als Vorraussetzung fuer
ein deterministisches Modell der Wasser- und Stoff-Fluesse. Landschaftsgenese und Landschaft-
soekologie, H. 10, Parameteraufbereitung fuer deterministische Gebiets-Wassermodelle, Grundla-
genarbeiten zur Analyse von Agrar-Oekosystemen, eds.: Bork, H.-R., Rohdenburg, H., p. 1-15.

Heerdegen, R.G., Beran, M.A. (1982): Quantifying source areas through land surface curvature.
Journal of Hydrology, 57.

Zevenbergen, L.W., Thorne, C.R. (1987): Quantitative analysis of land surface topography. Earth
Surface Processes and Landforms, 12: 47-56.

Fit 3.Degree Polynomial:

Haralick, R.M. (1983): Ridge and valley detection on digital images. Computer Vision, Graphics
and Image Processing, 22(1): 28-38.

For a discussion on the calculation of slope by ArcGIS check these links:



84 rsaga.solar.radiation

https://community.esri.com/?c=93&f=1734&t=239914

https://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?topicname=how_slope_works

See Also

rsaga.local.morphometry(), rsaga.parallel.processing(), rsaga.geoprocessor(), rsaga.env()

Examples

## Not run:
# Simple slope, aspect, and general curvature in degrees:
rsaga.slope.asp.curv("lican.sgrd", "slope", "aspect", "curvature",

method = "maxslope", unit.slope = "degrees", unit.aspect = "degrees")
# same for ASCII grids (default extension .asc):
rsaga.esri.wrapper(rsaga.slope.asp.curv,

in.dem="lican", out.slope="slope",
out.aspect = "aspect", out.cgene = "curvature",
method="maxslope", unit.slope = "degrees", unit.aspect = "degrees")

## End(Not run)

rsaga.solar.radiation Potential incoming solar radiation

Description

This function calculates the potential incoming solar radiation in an area either using a lumped atmo-
spheric transmittance model or estimating it based on water and dust content. Use rsaga.pisr()
instead with SAGA GIS 2.0.6+.

Usage

rsaga.solar.radiation(
in.dem,
out.grid,
out.duration,
latitude,
unit = c("kWh/m2", "J/m2"),
solconst = 1367,
method = c("lumped", "components"),
transmittance = 70,
pressure = 1013,
water.content = 1.68,
dust = 100,
time.range = c(0, 24),
time.step = 1,
days = list(day = 21, month = 3),
day.step = 5,

https://community.esri.com/?c=93&f=1734&t=239914
https://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?topicname=how_slope_works


rsaga.solar.radiation 85

env = rsaga.env(),
...

)

Arguments

in.dem name of input digital elevation model (DEM) grid in SAGA grid format (default
extension: .sgrd)

out.grid output grid file for potential incoming solar radiation sums

out.duration Optional output grid file for duration of insolation

latitude Geographical latitude in degree North (negative values indicate southern hemi-
sphere)

unit unit of the out.grid output: "kWh/m2" (default) or "J/m2"

solconst solar constant, defaults to 1367 W/m2

method specifies how the atmospheric components should be accounted for: either based
on a lumped atmospheric transmittance as specified by argument transmittance
("lumped", or numeric code 0; default); or by calculating the components cor-
responding to water and dust ("components", code 1)

transmittance transmittance of the atmosphere in percent; usually between 60 (humid areas)
and 80 percent (deserts)

pressure atmospheric pressure in mbar

water.content water content of a vertical slice of the atmosphere in cm: between 1.5 and 1.7cm,
average 1.68cm (default)

dust dust factor in ppm; defaults to 100ppm

time.range numeric vector of length 2: time span (hours of the day) for numerical integra-
tion

time.step time step in hours for numerical integration

days either a list with components day and month specifying a single day of the year
for radiation modeling; OR a numeric vector of length 2 specifying the start and
end date (see Note below)

day.step if days indicates a range of days, this specifies the time step (number of days)
for calculating the incoming solar radiation

env RSAGA geoprocessing environment obtained with rsaga.env(); this argument
is required for version control (see Note)

... optional arguments to be passed to rsaga.geoprocessor()

Note

This module ceased to exist under SAGA GIS 2.0.6+, which has a similar (but more flexible) module
Potential Solar Radiation that is interfaced by rsaga.pisr().

SAGA_CMD uses zero-based days and months, but this R function uses the standard one-based
days and months (e.g. day 1 is the first day of the month, month 1 is January) and translates to the
SAGA system.



86 rsaga.target

In SAGA 2.0.2, solar radiation sums calculated for a range of days, say days=c(a,b) actually
calculate radiation only for days a,...,b-1 (in steps of day.step - I used day.step=1 in this
example). The setting a=b however gives the same result as b=a+1, and indeed b=a+2 gives twice
the radiation sums and potential sunshine duration that a=b and b=a+1 both give.

The solar radiation module of SAGA 2.0.1 had a bug that made it impossible to pass a range of days
of the year or a range of hours of the day (time.range) to SAGA. These options work in SAGA
2.0.1.

This function uses module Incoming Solar Radiation from SAGA GIS library ta_lighting.

Author(s)

Alexander Brenning (R interface), Olaf Conrad (SAGA module)

References

Wilson, J.P., Gallant, J.C. (eds.), 2000: Terrain analysis - principles and applications. New York,
John Wiley & Sons.

See Also

rsaga.hillshade(), rsaga.insolation()

Examples

## Not run:
# potential solar radiation on Nov 7 in Southern Ontario...
rsaga.solar.radiation("dem","solrad","soldur",latitude=43,

days=list(day=7,month=11),time.step=0.5)

## End(Not run)

rsaga.target Define target grid for interpolation

Description

Define the resolution and extent of a target grid for interpolation by SAGA modules based on (1)
user-provided x/y coordinates, (2) an existing SAGA grid file, or (3) the header data of an ASCII
grid. Intended to be used with RSAGA’s interpolation functions.

Usage

rsaga.target(
target = c("user.defined", "target.grid", "header"),
user.cellsize = 100,
user.x.extent,
user.y.extent,
target.grid,



rsaga.target 87

header,
env = rsaga.env()

)

Arguments

target character: method used for defining the target grid

user.cellsize Only for target="user.defined": raster resolution (in the grid’s map units)

user.x.extent See user.y.extent

user.y.extent Only for target="user.defined": numeric vectors of length 2: minimum and
maximum coordinates of grid cell center points

target.grid Only for target="target.grid": character string giving the name of a SAGA
grid file that specifies the extent and resolution of the target grid; this target grid
file may be overwritten, depending on the specifics of the SAGA GIS module
used.

header Only for target="header": list: ASCII grid header (as returned e.g. by read.ascii.grid.header())
or defined manually; must at least have components ncols, nrows, cellsize,
and either x/yllcorner or x/yllcenter.

env A SAGA geoprocessing environment, see rsaga.env().)

Note

This function is to be used with RSAGA functions rsaga.inverse.distance(), rsaga.nearest.neighbour()
and rsaga.modified.quadratic.shephard(). Note that these are currently only compatible with
SAGA GIS 2.0.5 and higher.

See Also

read.ascii.grid.header()

Examples

## Not run:
# IDW interpolation of attribute "z" from the point shapefile
# 'points.shp' to a grid with the same extent and resolution
# as the (pre-existing) geology grid:
rsaga.inverse.distance("points", "dem", field = "z", maxdist = 1000,

target = rsaga.target(target="target.grid",
target.grid = "geology"))

## End(Not run)



88 rsaga.topdown.processing

rsaga.topdown.processing

Top-Down Processing

Description

Calculate the size of the local catchment area (contributing area), accumulated material, and flow
path length, using top-down processing algorithms from the highest to the lowest cell.
Top-Down Processing is new with SAGA GIS 2.1.3. See rsaga.parallel.processing() with
older versions.

Usage

rsaga.topdown.processing(
in.dem,
in.sinkroute,
in.weight,
in.mean,
in.material,
in.target,
in.lin.val,
in.lin.dir,
out.carea,
out.mean,
out.tot.mat,
out.acc.left,
out.acc.right,
out.flowpath,
step,
method = "mfd",
linear.threshold = Inf,
convergence = 1.1,
env = rsaga.env(),
...

)

Arguments

in.dem input: digital elevation model (DEM) as SAGA grid file (default file extension:
.sgrd)

in.sinkroute optional input: SAGA grid with sink routes

in.weight optional input: SAGA grid with weights

in.mean optional input: SAGA grid for mean over catchment calculation

in.material optional input: SAGA grid with material

in.target optional input: SAGA grid of accumulation target



rsaga.topdown.processing 89

in.lin.val optional input: SAGA grid providing values to be compared with linear flow
threshold instead of catchment area

in.lin.dir optional input: SAGA grid to be used for linear flow routing, if the value is a
valid direction (0-7 = N, NE, E, SE, S, SW, W, NW)

out.carea output: catchment area grid

out.mean optional output: mean over catchment grid

out.tot.mat optional output: total accumulated material grid

out.acc.left optional output: accumulated material from left side grid

out.acc.right optional output: accumulated material from right side grid

out.flowpath optional output: flow path length grid

step integer >=1: step parameter

method character or numeric: choice of processing algorithm (default "mfd", or 4):

• 0 Deterministic 8 ("d8" or 0)
• 1 Rho 8 ("rho8", or 1)
• 2 Braunschweiger Reliefmodell ("braunschweig" or 2)
• 3 Deterministic Infinity ("dinf" or 3)
• 4 Multiple Flow Direction ("mfd" or 4)
• 5 Multiple Triangular Flow Direction ("mtfd", or 5)
• 6 Multiple Maximum Gradient Based Flow Direction ("mdg", or 6)

linear.threshold

numeric (number of grid cells): threshold above which linear flow (i.e. the De-
terministic 8 algorithm) will be used; linear flow is disabled for linear.threshold=Inf
(the default)

convergence numeric >=0: a parameter for tuning convergent/ divergent flow; default value
of 1.1 gives realistic results and should not be changed

env list, setting up a SAGA geoprocessing environment as created by rsaga.env()

... further arguments to rsaga.geoprocessor()

Details

Refer to the references for details on the available algorithms.

Value

The type of object returned depends on the intern argument passed to the rsaga.geoprocessor().
For intern=FALSE it is a numerical error code (0: success), or otherwise (the default) a character
vector with the module’s console output.

Author(s)

Alexander Brenning and Donovan Bangs (R interface), Olaf Conrad (SAGA module), Thomas
Grabs (MTFD algorithm)



90 rsaga.topdown.processing

References

Deterministic 8:

O’Callaghan, J.F., Mark, D.M. (1984): The extraction of drainage networks from digital elevation
data. Computer Vision, Graphics and Image Processing, 28: 323-344.

Rho 8:

Fairfield, J., Leymarie, P. (1991): Drainage networks from grid digital elevation models. Water
Resources Research, 27: 709-717.

Braunschweiger Reliefmodell:

Bauer, J., Rohdenburg, H., Bork, H.-R. (1985): Ein Digitales Reliefmodell als Vorraussetzung fuer
ein deterministisches Modell der Wasser- und Stoff-Fluesse. Landschaftsgenese und Landschaft-
soekologie, H. 10, Parameteraufbereitung fuer deterministische Gebiets-Wassermodelle, Grundla-
genarbeiten zu Analyse von Agrar-Oekosystemen, eds.: Bork, H.-R., Rohdenburg, H., p. 1-15.

Deterministic Infinity:

Tarboton, D.G. (1997): A new method for the determination of flow directions and upslope areas in
grid digital elevation models. Water Ressources Research, 33(2): 309-319.

Multiple Flow Direction:

Freeman, G.T. (1991): Calculating catchment area with divergent flow based on a regular grid.
Computers and Geosciences, 17: 413-22.

Quinn, P.F., Beven, K.J., Chevallier, P., Planchon, O. (1991): The prediction of hillslope flow paths
for distributed hydrological modelling using digital terrain models. Hydrological Processes, 5: 59-
79.

Multiple Triangular Flow Direction:

Seibert, J., McGlynn, B. (2007): A new triangular multiple flow direction algorithm for computing
upslope areas from gridded digital elevation models. Water Ressources Research, 43, W04501.

Multiple Flow Direction Based on Maximum Downslope Gradient:

Qin, C.Z., Zhu, A-X., Pei, T., Li, B.L., Scholten, T., Zhou, C.H. (2011): An approach to computing
topographic wetness index based on maximum downslope gradient. Precision Agriculture, 12(1):
32-43.

See Also

rsaga.parallel.processing(), rsaga.wetness.index(), rsaga.geoprocessor(), rsaga.env()

Examples

## Not run:
# Calculation of contributing area with default settings:
rsaga.topdown.processing(in.dem = "dem", out.carea = "carea")
# Calculation of contributing area by maximunm downslope gradient:
rsaga.topdown.processing(in.dem = "dem", out.carea = "carea",

method = "mdg")

## End(Not run)



rsaga.union.polygons 91

rsaga.union.polygons Spatial union of two polygon layers

Description

The function rsaga.union.polygons uses SAGA function "Union" to calculate the geometric
union of two polygon layers. This corresponds to the intersection and the symmetrical difference
of the two layers.

Usage

rsaga.union.polygons(
layer_a = NULL,
layer_b = NULL,
result = NULL,
split = FALSE,
load = NULL,
env = rsaga.env()

)

Arguments

layer_a A character string representing the path to a polygon shapefile.

layer_b A character string representing the path to a polygon shapefile with which to
union layer_a.

result character, path indicating where to store the output shapefile.

split If TRUE, multipart polygons become separated polygons (default: FALSE).

load Deprecated, will be removed in a future release. Ignored if FALSE, and causes
an error if TRUE (default: NULL)

env RSAGA geoprocessing environment created by rsaga.env(), required because
module(s) depend(s) on SAGA version.

Details

Function gUnion() in rgeos package can also be used for joining intersecting polygon geome-
tries. However, rsaga.union.polygons() will be usually much faster, especially when joining
thousands of polygons.

Value

The function saves the output shapefile to the path indicated in function argument result.

Author(s)

Jannes Muenchow and Alexander Brenning (R interface), Olaf Conrad and Angus Johnson (SAGA
modules)



92 rsaga.wetness.index

rsaga.wetness.index SAGA Modules SAGA Wetness Index

Description

Calculate the SAGA Wetness Index (SWI), a modified topographic wetness index (TWI)

Usage

rsaga.wetness.index(
in.dem,
out.wetness.index,
out.carea,
out.cslope,
out.mod.carea,
suction,
area.type,
slope.type,
slope.min,
slope.offset,
slope.weight,
t.param,
env = rsaga.env(),
...

)

Arguments

in.dem input: digital elevation model (DEM) as SAGA grid file (default file extension:
.sgrd)

out.wetness.index

output file (optional): wetness index grid file name. Existing files of the same
name will be overwritten!

out.carea output file (optional): catchment area grid file name

out.cslope output file (optional): catchment slope grid file name

out.mod.carea output file (optional): file name of modified catchment area grid

suction SAGA GIS 2.1.0+: positive numeric value (optional): the lower this value is the
stronger is the suction effect; defaults to a value of 10 (more detailed information
is currently not available in the SAGA GIS documentation

area.type character or numeric (optional): type of area: "absolute" (or numeric code
0): absolute catchment area; "square root" (code 1; the default e.g. in SAGA
2.3.1): square root of catchment area; "specific" (code 2; the default e.g. in
SAGA 8.4.1): specific catchment area

slope.type character or numeric (optional): type of slope: "local" (or numeric code 0):
local slope; "catchment" (or code 1; the default): catchment slope.



rsaga.wetness.index 93

slope.min numeric (optional): minimum slope; default: 0

slope.offset numeric (optional): offset slope; default: 0.1

slope.weight numeric (optional): weighting factor for slope in index calculation; default: 1

t.param SAGA GIS up to version 2.0.8: positive numeric value (optional): undocu-
mented

env A SAGA geoprocessing environment, see rsaga.env().)

... optional arguments to be passed to rsaga.geoprocessor()

Details

The SAGA Wetness Index is similar to the Topographic Wetness Index (TWI), but it is based on a
modified catchment area calculation (out.mod.carea), which does not treat the flow as a thin film
as done in the calculation of catchment areas in conventional algorithms. As a result, the SWI tends
to assign a more realistic, higher potential soil wetness than the TWI to grid cells situated in valley
floors with a small vertical distance to a channel.

This module and its arguments changed substantially from SAGA GIS 2.0.8 to version 2.1.0. It
appears to me that the new algorithm is similar (but not identical) to the old one when using
area.type="absolute" and slope.type="local" but I haven’t tried out all possible options.
This help file will be updated as soon as additional documentation becomes available.

Value

The type of object returned depends on the intern argument passed to the rsaga.geoprocessor().
For intern=FALSE it is a numerical error code (0: success), or otherwise (the default) a character
vector with the module’s console output.

Author(s)

Alexander Brenning (R interface), Juergen Boehner and Olaf Conrad (SAGA module)

References

Boehner, J., Koethe, R. Conrad, O., Gross, J., Ringeler, A., Selige, T. (2002): Soil Regionalisation
by Means of Terrain Analysis and Process Parameterisation. In: Micheli, E., Nachtergaele, F.,
Montanarella, L. (ed.): Soil Classification 2001. European Soil Bureau, Research Report No. 7,
EUR 20398 EN, Luxembourg. pp.213-222.

Boehner, J. and Selige, T. (2006): Spatial prediction of soil attributes using terrain analysis and
climate regionalisation. In: Boehner, J., McCloy, K.R., Strobl, J. [Ed.: SAGA - Analysis and
Modelling Applications, Goettinger Geographische Abhandlungen, Goettingen: 13-28.

See Also

rsaga.parallel.processing(), rsaga.geoprocessor(), rsaga.env()



94 set.file.extension

Examples

## Not run:
# using SAGA grids:
rsaga.wetness.index("dem.sgrd","swi.sgrd")

## End(Not run)

set.file.extension Determine or modify file name extensions

Description

Function get.file.extension determines the file extension, set.file.extension changes it,
and default.file.extension changes it only if it is not already specified.

Usage

set.file.extension(filename, extension, fsep = .Platform$file.sep)

get.file.extension(filename, fsep = .Platform$file.sep)

default.file.extension(filename, extension, force = FALSE)

Arguments

filename character vector: file name(s), possibly including paths and extensions; a file
name ending with a "." is interpreted as having extension "", while a file name
that doesn’t contain a "." is interpreted has having no extension.

extension character string: file extension, without the dot

fsep character: separator between paths

force logical argument to default.file.extension: force the file extension to be
extension (same result as set.file.extension), or only set it to extension if
it has not been specified?

Value

character vector of same length as filename

Examples

fnm = c("C:/TEMP.DIR/temp","C:/TEMP.DIR/tmp.txt","tempfile.")
get.file.extension(fnm)
set.file.extension(fnm,extension=".TMP")
default.file.extension(fnm,extension=".TMP")



wind.shelter 95

wind.shelter Wind Shelter Index

Description

wind.shelter is a function to be used with focal.function() to calculate a topographic wind
shelter index from a digital elevation model, which is a proxy for snow accumulation on the lee side
of topographic obstacles. wind.shelter.prep performs some preparatory calculations to speed up
repeated calls to wind.shelter.

Usage

wind.shelter(x, prob = NULL, control)

wind.shelter.prep(radius, direction, tolerance, cellsize = 90)

Arguments

x square matrix of elevation data

prob numeric: quantile of slope values to be used in computing the wind shelter index;
if NULL, use max (equivalent to prob=1)

control required argument: the result of a call to wind.shelter.prep

radius radius (>1) of circle segment to be used (number of grid cells, not necessarily
an integer)

direction wind direction: direction from which the wind originates; North = 0 = 2*pi,
clockwise angles.

tolerance directional tolerance

cellsize grid cellsize

Details

wind.shelter implements a wind shelter index used by Plattner et al. (2004) for modeling snow
accumulation patterns on a glacier in the Austrian Alps. It is a modified version of the algorithm of
Winstral et al. (2002). The wind shelter index of Plattner et al. (2004) is defined as:
Shelter index(S) = arctan( max( (z(x0)-z(x)) / |x0-x| : x in S ) ),

where S = S(x0,a,da,d) is the set of grid nodes within a distance <=d from x0, only considering
grid nodes in directions between a-da and a+da from x0.

The present implementation generalizes this index by replacing max by the quantile function; the
max function is used if prob=NULL, and the same result is obtained for prob=1 using the quantile
function.



96 wind.shelter

Value

The function wind.shelter returns the wind shelter index as described above if a numeric matrix
x is provided. If it is missing, it returns the character string "windshelter".

wind.shelter.prep returns a list with components mask and dist. Both are square matrices with
2*(ceiling(radius)+1) columns and rows:

mask indicates which grid cell in the moving window is within the specified circle
segment (value FALSE) or not (TRUE)

dist the precomputed distances of a grid cell to the center of the moving window, in
map units

Note

The wind shelter index only makes sense if elevation is measured in the same units as the horizontal
map units used for the cellsize argument (i.e. usually meters).

wind.shelter and wind.shelter.prep do not restrict the calculation to a circular area; this is
done by focal.function() when used in combination with that function (assuming search.mode="circle").

Note that the present definition of the wind shelter index returns negative values for surfaces that are
completely exposed toward the specified direction. This may make sense if interpreted as a "wind
exposure index", or it might be appropriate to set negative wind shelter values to 0.

Author(s)

Alexander Brenning

References

Plattner, C., Braun, L.N., Brenning, A. (2004): Spatial variability of snow accumulation on Vernagt-
ferner, Austrian Alps, in winter 2003/2004. Zeitschrift fuer Gletscherkunde und Glazialgeologie,
39: 43-57.

Winstral, A., Elder, K., Davis, R.E. (2002): Spatial snow modeling of wind-redistributed snow
using terrain-based parameters. Journal of Hydrometeorology, 3: 524-538.

See Also

focal.function(), quantile()

Examples

# Settings used by Plattner et al. (2004):
ctrl = wind.shelter.prep(6,-pi/4,pi/12,10)
## Not run: focal.function("dem.asc",fun=wind.shelter,control=ctrl,

radius=6,search.mode="circle")
## End(Not run)



Index

∗ file
read.ascii.grid, 25
rsaga.esri.to.sgrd, 37
rsaga.import.gdal, 58
rsaga.sgrd.to.esri, 78
set.file.extension, 94

∗ interface
read.ascii.grid, 25
rsaga.add.grid.values.to.points,

30
rsaga.close.gaps, 31
rsaga.contour, 32
rsaga.copy.sgrd, 33
rsaga.env, 34
rsaga.esri.to.sgrd, 37
rsaga.esri.wrapper, 38
rsaga.fill.sinks, 40
rsaga.filter.gauss, 42
rsaga.filter.simple, 43
rsaga.geoprocessor, 44
rsaga.get.modules, 47
rsaga.get.usage, 50
rsaga.get.version, 51
rsaga.grid.calculus, 52
rsaga.grid.to.points, 54
rsaga.hillshade, 55
rsaga.html.help, 56
rsaga.import.gdal, 58
rsaga.insolation, 59
rsaga.inverse.distance, 62
rsaga.lib.prefix, 64
rsaga.local.morphometry, 65
rsaga.parallel.processing, 67
rsaga.pisr, 70
rsaga.pisr2, 74
rsaga.sgrd.to.esri, 78
rsaga.sink.removal, 79
rsaga.sink.route, 80
rsaga.slope.asp.curv, 81

rsaga.solar.radiation, 84
rsaga.target, 86
rsaga.topdown.processing, 88
rsaga.wetness.index, 92

∗ operations
rsaga.intersect.polygons, 61
rsaga.union.polygons, 91

∗ polygons
rsaga.intersect.polygons, 61
rsaga.union.polygons, 91

∗ spatial
focal.function, 5
grid.predict, 9
grid.to.xyz, 11
multi.focal.function, 15
pick.from.points, 20
read.ascii.grid, 25
relative.position, 28
resid.median, 29
rsaga.add.grid.values.to.points,

30
rsaga.close.gaps, 31
rsaga.contour, 32
rsaga.copy.sgrd, 33
rsaga.env, 34
rsaga.esri.to.sgrd, 37
rsaga.esri.wrapper, 38
rsaga.fill.sinks, 40
rsaga.filter.gauss, 42
rsaga.filter.simple, 43
rsaga.geoprocessor, 44
rsaga.get.modules, 47
rsaga.get.usage, 50
rsaga.get.version, 51
rsaga.grid.calculus, 52
rsaga.grid.to.points, 54
rsaga.hillshade, 55
rsaga.import.gdal, 58
rsaga.insolation, 59

97



98 INDEX

rsaga.inverse.distance, 62
rsaga.lib.prefix, 64
rsaga.local.morphometry, 65
rsaga.parallel.processing, 67
rsaga.pisr, 70
rsaga.pisr2, 74
rsaga.sgrd.to.esri, 78
rsaga.sink.removal, 79
rsaga.sink.route, 80
rsaga.slope.asp.curv, 81
rsaga.solar.radiation, 84
rsaga.target, 86
rsaga.topdown.processing, 88
rsaga.wetness.index, 92
wind.shelter, 95

∗ utilities
centervalue, 4
create.variable.name, 4
match.arg.ext, 13
rsaga.html.help, 56
set.file.extension, 94

∗ vector
rsaga.intersect.polygons, 61
rsaga.union.polygons, 91

abbreviate(), 7

base::Sys.info(), 49
base::system(), 45
browseURL(), 57

centervalue, 4
centervalue(), 28, 30
create.variable.name, 4
create.variable.name(), 8, 22

default.file.extension
(set.file.extension), 94

dem (landslides), 12

focal.function, 5
focal.function(), 4, 10, 18, 19, 28–30, 53,

95, 96

gapply (focal.function), 5
get.file.extension

(set.file.extension), 94
grid.predict, 9
grid.predict(), 15, 17–19
grid.to.xyz, 11

grid.to.xyz(), 24
gstat::idw(), 64
gstat::krige(), 22
gstat::vgm(), 22

internal.pick.from.ascii.grid
(pick.from.points), 20

krige(), 24

landslides, 12
local.function (focal.function), 5
local.function(), 53

match.arg(), 13–15
match.arg.ext, 13
median(), 30
multi.focal.function, 15
multi.focal.function(), 8–10, 53
multi.local.function

(multi.focal.function), 15
multi.local.function(), 8–10

na.exclude(), 18
na.pass(), 18

options(), 35, 45

pick.from.ascii.grid
(pick.from.points), 20

pick.from.ascii.grid(), 12, 31, 35, 77
pick.from.ascii.grids

(pick.from.points), 20
pick.from.points, 20
pick.from.points(), 31
pick.from.saga.grid (pick.from.points),

20
pick.from.saga.grid(), 31
pick.from.shapefile (pick.from.points),

20
plyr::ddply(), 23
pmatch(), 14, 15
predict(), 9, 10

quantile(), 29, 30, 96

rank(), 28
read.ascii.grid, 25
read.ascii.grid(), 11, 12, 24
read.ascii.grid.header(), 87



INDEX 99

read.Rd.grid (read.ascii.grid), 25
read.sgrd (read.ascii.grid), 25
relative.position, 28
relative.position(), 8
relative.rank (relative.position), 28
relative.rank(), 8
resid.median, 29
resid.median(), 4, 8
resid.minmedmax (resid.median), 29
resid.minmedmax(), 7, 8
resid.quantile (resid.median), 29
resid.quantile(), 7, 8
resid.quartiles (resid.median), 29
resid.quartiles(), 8
RSAGA-package, 3
rsaga.add.grid.values.to.points, 30
rsaga.add.grid.values.to.points(), 55
rsaga.aspect (rsaga.local.morphometry),

65
rsaga.close.gaps, 31
rsaga.close.gaps(), 38
rsaga.close.one.cell.gaps

(rsaga.close.gaps), 31
rsaga.contour, 32
rsaga.copy.sgrd, 33
rsaga.curvature

(rsaga.local.morphometry), 65
rsaga.env, 34, 37, 78
rsaga.env(), 3, 23, 32–35, 38, 39, 42, 43, 45,

46, 48, 50–54, 57, 58, 60, 61, 63–65,
67, 69, 70, 73, 76, 79, 82, 84, 85, 87,
89–91, 93

rsaga.esri.to.sgrd, 37
rsaga.esri.to.sgrd(), 39
rsaga.esri.wrapper, 38
rsaga.esri.wrapper(), 38, 46, 79
rsaga.fill.sinks, 40
rsaga.fill.sinks(), 80
rsaga.filter.gauss, 42
rsaga.filter.gauss(), 43
rsaga.filter.simple, 43
rsaga.filter.simple(), 42
rsaga.geoprocessor, 44
rsaga.geoprocessor(), 23, 31–33, 37,

39–43, 48, 50–54, 56, 57, 60, 61, 63,
67, 69, 70, 73, 76, 78–80, 82–85, 89,
90, 93

rsaga.get.lib.modules

(rsaga.get.modules), 47
rsaga.get.lib.modules(), 45
rsaga.get.libraries

(rsaga.get.modules), 47
rsaga.get.libraries(), 46
rsaga.get.modules, 47
rsaga.get.modules(), 35, 46, 50, 77
rsaga.get.modules.path, 49
rsaga.get.usage, 50
rsaga.get.usage(), 46, 48, 57
rsaga.get.version, 51
rsaga.get.version(), 35, 36, 77
rsaga.grid.calculus, 52
rsaga.grid.to.points, 54
rsaga.grid.to.points(), 31
rsaga.hillshade, 55
rsaga.hillshade(), 38, 46, 50, 57, 61, 73,

76, 86
rsaga.html.help, 56
rsaga.html.help(), 48, 50
rsaga.import.gdal, 58
rsaga.insolation, 59
rsaga.insolation(), 56, 73, 76, 86
rsaga.intersect.polygons, 61
rsaga.intersect.polygons(), 62
rsaga.inverse.distance, 62
rsaga.inverse.distance(), 33, 87
rsaga.lib.prefix, 64
rsaga.lib.prefix(), 35
rsaga.linear.combination

(rsaga.grid.calculus), 52
rsaga.local.morphometry, 65
rsaga.local.morphometry(), 50, 81, 84
rsaga.modified.quadratic.shephard

(rsaga.inverse.distance), 62
rsaga.modified.quadratic.shephard(),

87
rsaga.module.exists

(rsaga.get.modules), 47
rsaga.module.exists(), 45
rsaga.nearest.neighbour

(rsaga.inverse.distance), 62
rsaga.nearest.neighbour(), 87
rsaga.parallel.processing, 67
rsaga.parallel.processing(), 67, 84, 88,

90, 93
rsaga.pisr, 70
rsaga.pisr(), 35, 45, 61, 74, 76, 77, 84, 85



100 INDEX

rsaga.pisr2, 74
rsaga.plan.curvature

(rsaga.local.morphometry), 65
rsaga.profile.curvature

(rsaga.local.morphometry), 65
rsaga.search.modules

(rsaga.get.modules), 47
rsaga.search.modules(), 46
rsaga.set.env, 77
rsaga.sgrd.to.esri, 78
rsaga.sgrd.to.esri(), 39
rsaga.sink.removal, 79
rsaga.sink.removal(), 41, 81
rsaga.sink.route, 80
rsaga.sink.route(), 41, 80
rsaga.slope (rsaga.local.morphometry),

65
rsaga.slope.asp.curv, 81
rsaga.slope.asp.curv(), 65, 67
rsaga.solar.radiation, 84
rsaga.solar.radiation(), 56, 61, 73, 76
rsaga.target, 86
rsaga.target(), 63, 64
rsaga.topdown.processing, 88
rsaga.topdown.processing(), 68, 70
rsaga.triangulation

(rsaga.inverse.distance), 62
rsaga.union.polygons, 91
rsaga.union.polygons(), 91
rsaga.wetness.index, 92
rsaga.wetness.index(), 70, 90

scan(), 6, 17, 23, 27
set.file.extension, 94
sf::read_sf(), 28
sf::write_sf(), 28
shapefiles::write.shapefile(), 64
study_area (landslides), 12
system(), 23, 44, 46

vgm(), 24

wind.shelter, 95
wind.shelter(), 8
write.ascii.grid (read.ascii.grid), 25
write.ascii.grid(), 24
write.ascii.grid.header(), 7, 17
write.Rd.grid (read.ascii.grid), 25
write.sgrd (read.ascii.grid), 25


	RSAGA-package
	centervalue
	create.variable.name
	focal.function
	grid.predict
	grid.to.xyz
	landslides
	match.arg.ext
	multi.focal.function
	pick.from.points
	read.ascii.grid
	relative.position
	resid.median
	rsaga.add.grid.values.to.points
	rsaga.close.gaps
	rsaga.contour
	rsaga.copy.sgrd
	rsaga.env
	rsaga.esri.to.sgrd
	rsaga.esri.wrapper
	rsaga.fill.sinks
	rsaga.filter.gauss
	rsaga.filter.simple
	rsaga.geoprocessor
	rsaga.get.modules
	rsaga.get.modules.path
	rsaga.get.usage
	rsaga.get.version
	rsaga.grid.calculus
	rsaga.grid.to.points
	rsaga.hillshade
	rsaga.html.help
	rsaga.import.gdal
	rsaga.insolation
	rsaga.intersect.polygons
	rsaga.inverse.distance
	rsaga.lib.prefix
	rsaga.local.morphometry
	rsaga.parallel.processing
	rsaga.pisr
	rsaga.pisr2
	rsaga.set.env
	rsaga.sgrd.to.esri
	rsaga.sink.removal
	rsaga.sink.route
	rsaga.slope.asp.curv
	rsaga.solar.radiation
	rsaga.target
	rsaga.topdown.processing
	rsaga.union.polygons
	rsaga.wetness.index
	set.file.extension
	wind.shelter
	Index

